
应用化学 ›› 2025, Vol. 42 ›› Issue (3): 365-374.DOI: 10.19894/j.issn.1000-0518.240271
李云扬1,2, 郑睿哲1, 周延1, 海热古·吐逊1,2(), 董彪1,3(
)
收稿日期:
2024-08-05
接受日期:
2025-01-21
出版日期:
2025-03-01
发布日期:
2025-04-11
通讯作者:
海热古·吐逊,董彪
基金资助:
Yun-Yang LI1,2, Rui-Zhe ZHENG1, Yan ZHOU1, Tu-Xun HAIREGU1,2(), Biao DONG1,3(
)
Received:
2024-08-05
Accepted:
2025-01-21
Published:
2025-03-01
Online:
2025-04-11
Contact:
Tu-Xun HAIREGU,Biao DONG
About author:
dongb@jlu.edu.cnSupported by:
摘要:
镧系掺杂的上转换(UC)微/纳米晶体因其独特的光学性能优势,在多个领域如显示科技、传感技术、生物影像以及药物传输等方面具有广阔的应用前景和潜力。 尽管在上转换发光领域的研究与运用已取得显著进展,但如何实现对单颗粒水平发光晶体的颜色调控,仍然是一个亟待解决的问题。 本文提出了基于热处理方法的NaYF4单颗粒晶体向Y2O3晶体的转变策略,通过原位离子交换,成功获得了原位生长的Y2O3晶体,并对其荧光、形貌、结构以及尺寸进行了表征。 研究发现,原位生长的Y2O3微米棒保留了与NaYF4相同的尺寸及形貌,元素分布及高分辨(TEM)的表征结果进一步证实了Y2O3∶Er3+/Yb3+的成功制备。 随着激发功率的增加,Er3+在NaYF4基质材料中的红光与绿光强度比(R/G)从4.5逐渐降至3.42,而在Y2O3基质材料中,该比值从0.84显著降至0.48。 表明通过晶体的原位相变,可实现Er3+在NaYF4中的上转换红光向Y2O3中明亮的上转换绿光的实时调控。 这一发现不仅拓展了单颗粒水平稀土发光晶体的研究方法,而且其单颗粒水平的多色荧光性能有望应用于精细防伪、多色成像等领域。
中图分类号:
李云扬, 郑睿哲, 周延, 海热古·吐逊, 董彪. 单颗粒上转换荧光光谱性质调控[J]. 应用化学, 2025, 42(3): 365-374.
Yun-Yang LI, Rui-Zhe ZHENG, Yan ZHOU, Tu-Xun HAIREGU, Biao DONG. Research on the Regulation of Upconversion Fluorescence Spectral Properties on Single Particles[J]. Chinese Journal of Applied Chemistry, 2025, 42(3): 365-374.
图2 微米棒NaYF4∶Er3+/Yb3+的(A、B)SEM图和(C)EDX元素分布图; 通过热处理制备的Y2O3∶Er3+/Yb3+微米棒的(D)SEM图和(E)EDX元素分布图
Fig.2 SEM image (A, B) and EDX elemental mapping (C) of NaYF4∶Er3+/Yb3+ microrod; SEM image (D) and EDX elemental mapping (E) of Y2O3∶Er3+/Yb3+ microrods prepared through thermal treatment
图3 NaYF4∶Er3+/Yb3+微米棒的结构表征: (A) NaYF4∶Er3+/Yb3+高分辨TEM图; (B)经快速傅里叶变换(FFT)后电子衍射图; (C)高分辨HAADF-STEM图; (D)选区电子衍射图(SAED)。 通过热处理制备的Y2O3∶Er3+/Yb3+微米棒结构表征(E)高分辨TEM图; (F) FFT电子衍射图; (G)高分辨HAADF-STEM图; (H)选区电子衍射图(SAED)
Fig.3 Structural characterization of NaYF4∶Er3+/Yb3+ microrod: (A) High-resolution TEM image; (B) Electron diffraction pattern after fast Fourier transform (FFT); (C) High-resolution HAADF-STEM image; (D) Selected area electron diffraction (SAED) pattern. Structural characterization of Y2O3∶Er3+/Yb3+ microrod micrometer-sized rods prepared by heat treatment (E) High-resolution TEM image; (F) Electron diffraction pattern after FFT; (G) High-resolution HAADF-STEM image; (H) Selected area electron diffraction (SAED) pattern
图4 (A)中间及端边激发单个NaYF4∶Er3+/Yb3+和Y2O3∶Er3+/Yb3+微米棒位置示意图; (B)功率密度为185 kW/cm2,激发NaYF4∶Er3+/Yb3+和Y2O3∶Er3+/Yb3+微米棒的中间时的发射光谱图; (C)中间及端边激发时NaYF4∶Er3+/Yb3+和Y2O3∶Er3+/Yb3+微米棒的光学图像
Fig.4 (A) Schematic diagram of exciting at middle and end edge of single NaYF4∶Er3+/Yb3+ and Y2O3∶Er3+/Yb3+ microrods; (B) Emission spectra of exciting the middle parts of NaYF4∶Er3+/Yb3+ and Y2O3∶Er3+/Yb3+ microrods at 185 kW/cm2 power density; (C) Optical images of exciting at middle and end edge of NaYF4∶Er3+/Yb3+ and Y2O3∶Er3+/Yb3+ microrods
图6 (A) NaYF4∶Er3+/Yb3+功率依赖上转换发射光谱的红光与绿光的积分强度与(B)R/G值的变化; (C) Y2O3∶Er3+/Yb3+微米棒上转换发射光谱的红与绿光积分强度; (D)功率依赖R/G值的变化
Fig.6 (A) The integral intensities of red and green light in the power-dependent upconversion emission spectrum of NaYF4∶Er3+/Yb3+ and (B) the variation of the R/G value; (C) The integral intensities of red and green light in the upconversion emission spectrum of Y2O3∶Er3+/Yb3+ microrods; (D) The variation of power-dependent R/G value
1 | SUO H, GUO C, LI T. Broad-scope thermometry based on dual-color modulation up-conversion phosphor Ba5Gd8Zn4O21∶Er3+/Yb3+[J]. J Phys Chem C, 2016, 120(5): 2914-2924. |
2 | QIN J, XIANG J, SUO H, et al. NIR persistent luminescence phosphor Zn1.3Ga1.4Sn0.3O4∶Yb3+,Er3+,Cr3+ with 980 nm laser excitation[J]. J Mater Chem C, 2019, 7(38): 11903-11910. |
3 | ZHAO X, SUO H, ZHANG Z, et al. Cross-relaxation and non-steady-state processes induced up-conversion color modulation in Gd2O3∶Ln3+/Er3+ (Ln=Tm, Ho)[J]. Dyes Pigm, 2018, 151: 335-341. |
4 | DENG R, QIN F, CHEN R, et al. Temporal full-colour tuning through non-steady-state upconversion[J]. Nat Nanotechnol, 2015, 10(3): 237-242. |
5 | ZHOU J, LIU Z, LI F. Upconversion nanophosphors for small-animal imaging[J]. Chem Soc Rev, 2012, 41(3): 1323-1349. |
6 | LIU B, CHEN Y, LI C, et al. Poly(acrylic acid) modification of Nd3+-sensitized upconversion nanophosphors for highly efficient UCL imaging and pH-responsive drug delivery[J]. Adv Funct Mater, 2015, 25(29): 4717-4729. |
7 | YIN Z, LI H, XU W, et al. Local field modulation induced three-order upconversion enhancement: combining surface plasmon effect and photonic crystal effect[J]. Adv Mater, 2016, 28(13): 2518-2525. |
8 | DONG H, SUN L D, FENG W, et al. Versatile spectral and lifetime multiplexing nanoplatform with excitation orthogonalized upconversion luminescence[J]. ACS Nano, 2017, 11(3): 3289-3297. |
9 | MEDINTZ I L, UYEDA H T, GOLDMAN E R, et al. Quantum dot bioconjugates for imaging, labelling and sensing[J]. Nat Mater, 2005, 4(6): 435-446. |
10 | WILSON R, COSSINS A R, SPILLER D G. Encoded microcarriers for high-throughput multiplexed detection[J]. Angew Chem Int Ed, 2006, 45(37): 6104-6117. |
11 | LONG Z, WEN Y, ZHOU J, et al. No-interference reading for optical information storage and ultra-multiple anti-counterfeiting applications by designing targeted recombination in charge carrier trapping phosphors[J]. Adv Opt Mater, 2019, 7(10): 1900006. |
12 | LIU X, WANG Y, LI X, et al. Binary temporal upconversion codes of Mn2+-activated nanoparticles for multilevel anti-counterfeiting[J]. Nat Commun, 2017, 8(1): 899. |
13 | HUANG K, DENG J, LEONG H S, et al. Ultraviolet metasurfaces of ≈80% efficiency with antiferromagnetic resonances for optical vectorial anti-counterfeiting[J]. Laser Photon Rev, 2019, 13(5): 1800289. |
14 | REN Y, YANG Z, LI M, et al. Reversible upconversion luminescence modification based on photochromism in BaMgSiO4∶Yb3+,Tb3+ ceramics for anti-counterfeiting applications[J]. Adv Opt Mater, 2019, 7(15): 1900213. |
15 | ZHAN Y, YANG Z, XU Z, et al. Electrochromism induced reversible upconversion luminescence modulation of WO3∶Yb3+, Er3+ inverse opals for optical storage application[J]. Chem Eng J, 2020, 394: 124967. |
16 | CHáVEZ D H, CONTRERAS O E, HIRATA G A. Synthesis and upconversion luminescence of nanoparticles Y2O3 and Gd2O3 Co-doped with Yb3+ and Er3+[J]. Nanomater Nanotechnol, 2016, 6(7): 62188. |
17 | XIE W Y, ZHANG P, ZHANG H Y, et al. Different rare earth ions activated NaBiF4 microcrystals for adjustable multicolor luminescence and white light-emitting diodes[J]. J Lumin, 2023, 263: 119969. |
18 | SUN J F, ZHAO Y, YAN K, et al. Multicolor regulation of trivalent lanthanide ions-codoped boggildite-type phosphor toward superb warm white luminescence for white light-emitting diodes[J]. Mater Today Phys, 2024, 42: 101354. |
19 | 赖俊欢, 陈龙, 刘雪云. 蓝光激发的KMgF3∶Cr3+/Ni2+基透明微晶玻璃超宽带近红外发光[J]. 发光学报, 2024, 45(7): 1134-1144. |
LAI J H, CHEN L, LIU X Y. Blue light-excitable ultra-broadband near-infrared emission of KMgF3∶Cr3+/Ni2+ nanocrystals embedded in glass ceramics[J]. Chin J Lumin, 2024, 45(7): 1134-1144. | |
20 | SHENG W, YAN L, TAN Y, et al. Enabling efficient mid-infrared luminescence of Tm3+ in a single core-shell nanocrystal through erbium sublattice[J]. Adv Photon Res, 2023, 4(10): 2300172. |
21 | LIU S, YAN L, LI Q, et al. Tri-channel photon emission of lanthanides in lithium-sublattice core-shell nanostructures for multiple anti-counterfeiting[J]. Chem Eng J, 2020, 397: 125451. |
22 | SUN X, SUN J, DONG B, et al. Noninvasive temperature monitoring for dual-modal tumor therapy based on lanthanide-doped up-conversion nanocomposites[J]. Biomaterials, 2019, 201: 42-52. |
23 | WANG C, LIU D, WEI G, et al. Enabling multimodal luminescence in a single nanoparticle for X-ray imaging encryption and anticounterfeiting[J]. Nano Lett, 2024, 24(31): 9691-9699. |
24 | AN Z, LI Q, HUANG J, et al. Selectively manipulating interactions between lanthanide sublattices in nanostructure toward orthogonal upconversion[J]. Nano Lett, 2023, 23(13): 6241-6248. |
25 | LIU S, AN Z, ZHOU B. Optical multiplexing of upconversion in nanoparticles towards emerging applications[J]. Chem Eng J, 2023, 452: 139649. |
26 | ZHAO Q, TIAN X, REN L, et al. Understanding of lanthanide-doped core-shell structure at the nanoscale level[J]. Nanomaterials-Basel, 2024, 14(12): 14121063. |
27 | HU S, XU H, ZHOU B, et al. Double stopband bilayer photonic crystal based upconversion fluorescence PSA sensor[J].Sens Actuator B: Chem, 2021, 326: 128816. |
28 | PENG Y P, LU W, REN P, et al. Multi-band up-converted lasing behavior in NaYF4∶Yb/Er nanocrystals[J]. Nanomaterials-Basel, 2018, 8(7): 8070497. |
29 | GAO D, GAO F, WU J, et al. Up-conversion luminescence performance and application of GdOF∶Yb,Er porous spheres obtained by calcining NaGdF4∶Yb,Er microcrystals[J]. Appl Surf Sci, 2022, 587: 152820. |
30 | XU W, ZHENG Y, LIU X, et al. Manipulation of coupled X-ray-excited persistent luminescence and upconversion in Er3+ doped fluoride nanoparticles for multifaceted applications[J]. Laser Photon Rev, 2024, 18(8): 2400147. |
31 | VINCI A, SILVESTRONI L, GILLI N, et al. Advancements in carbon fibre reinforced ultra-refractory ceramic composites: effect of rare earth oxides addition[J]. Compos Part A-Appl S, 2022, 156: 106858. |
32 | GUPTA S K, SUDARSHAN K, KADAM R M. Optical nanomaterials with focus on rare earth doped oxide[J]. Mater Today Commun, 2021, 27: 102277. |
33 | 胡家乐, 薛冬峰. 稀土离子特性与稀土功能材料研究进展[J]. 应用化学, 2020, 37(3): 245-255. |
HU J L, XUE D F. Research progress on rare earth ion characteristics and rare earth functional materials[J]. Chin J Appl Chem, 2020, 37(3): 245-255. | |
34 | 安正策, 王丽萍, 周博. Er3+/Tm3+共掺镱基纳米晶上转换白光调控及应用[J]. 应用化学, 2023, 40(12): 1623-1629. |
AN Z C, WANG L P, ZHOU B. Regulation and application of white light for upconversion of Er3+/Tm3+ co-doped ytterbium nanocrystals[J]. Chin J Appl Chem, 2023, 40(12): 1623-1269. | |
35 | 海热古·吐逊. 等离激元效应对棒状微纳稀土掺杂颗粒的结构及发光调控[D]. 西安: 陕西师范大学, 2022. |
TUXUN H. Regulation of the structure and luminescence of rod-shaped micro/nano rare earth-doped particles by plasmonic effects[D]. Xi'an: Shaanxi Normal University, 2022. | |
36 | HERNÁNDEZ-ÁLVAREZ C, SOLER-CARRACEDO K, WOŹNY P, et al. Vacuum-assisted colossal enhancement of up-conversion luminescence of lanthanide-doped nanoparticles upon NIR laser irradiation-a new strategy for phosphor development[J]. J Mater Chem C, 2024, 12(21): 7707-7714. |
37 | MENG X, XIE Y, SHEN T, et al. Rare earth fluoride with dye-sensitized upconversion luminescence under dual-excitation wavelength[J]. Inorg Chem Commun, 2024, 167: 112672. |
38 | WANG X, ZHANG P, XIAO X, et al. Giant enhancement of anti-quenching upconversion luminescence in Sc2W3O12∶Er3+/Yb3+ phosphors for temperature sensing[J]. J Mater Chem C, 2024, 12(24): 8977-8986. |
39 | WANG C, CHEN X B, ZHANG C L, et al. Optical parameters and energy level splitting of Er3+ in Er3+∶GdVO4[J]. Acta Phys Sin-Ch Ed, 2007, 56(10): 6090-6097. |
40 | TUXUN H, CAI Z, JI M, et al. Controlling and probing heat generation in an optical heater system[J]. Nanophotonics-Berlin, 2022, 11(5): 979-986. |
41 | TUXUN H, LI J, LEE H, et al. Tuning structure and luminescence color output of a single upcoversion microcrystal through plasmonic heating effect[J]. Opt Mater, 2024, 151: 115325. |
42 | LU Q, HOU Y, TANG A, et al. Upconversion multicolor tuning: red to green emission from Y2O3∶Er,Yb nanoparticles by calcination[J]. Appl Phys Lett, 2013, 102(23): 6104. |
43 | SHAO Q, ZHANG G, OUYANG L, et al. Emission color tuning of core/shell upconversion nanoparticles through modulation of laser power or temperature[J]. Nanoscale, 2017, 9(33): 12132-12141. |
44 | ZHANG S, WANG Y, DENG D, et al. Enhancing X-ray excited persistent luminescence in lanthanide-doped fluoride nanoparticles via a versatile acid pickling strategy[J]. Laser Photonics Rev, 2024, 18(10): 2400357. |
45 | WEN D, ZUO S, HUANG C, et al. Tunable excitation polarized upconversion luminescence and reconfigurable double anti-counterfeiting from Er3+ doped single nanorods[J]. Adv Opt Mater, 2023, 11(24): 2301126. |
46 | LIU S B, YAN L, HUANG J S, et al. Controlling upconversion in emerging multilayer core-shell nanostructures: from fundamentals to frontier applications[J]. Chem Soc Rev, 2022, 51(5): 1729-1765. |
[1] | 吴小峰, 陈德顺, 马伟, 黄科科. 电喷雾沉积WO3/Fe2TiO5复合光阳极及其光电催化水裂解性能[J]. 应用化学, 2022, 39(4): 694-696. |
[2] | 吴胜富, 黄润均, 陈东莲, 黄增尉, 马少妹, 袁爱群. 三聚磷酸二氢铝与有机胺的插层反应特征[J]. 应用化学, 2014, 31(07): 847-851. |
[3] | 李向清, 康诗钊, 唐韵秋, 李国栋, 穆劲. 碳掺杂的二氧化钛纳米管的制备及其可见光催化性能[J]. 应用化学, 2013, 30(02): 178-184. |
[4] | 王鹏飞, 张贤文, 朱永春, 钱逸泰. Tb3+掺杂CePO4核壳微球的水热合成及其发光性能[J]. 应用化学, 2011, 28(08): 913-917. |
[5] | 黄洪, 雷鸣, 黄伟欣, 陈焕钦. 络合剂对制备TiO2薄膜的影响以及超亲水特征[J]. 应用化学, 2010, 27(11): 1322-1327. |
[6] | 蒋家兴,赵剑曦,廖新焕,姜蓉. Ni-Al2O3太阳光热转换吸收薄膜的制备[J]. 应用化学, 2010, 27(03): 358-362. |
[7] | 粟智,刘丛,徐茂文. 单斜层状结构锂离子电池正极材料LiYxMn1-xO2的合成及电化学性能[J]. 应用化学, 2010, 27(02): 220-226. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 58
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 90
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||