| 1 | 
																						 
											 罗渝然, 俞书勤, 张祖德, 等. 再谈什么是活化能——Arrhenius活化能的定义、解释、以及容易混淆的物理量[J]. 大学化学, 2010, 25(3): 35-42.
											 											 | 
										
																													
																						 | 
																						 
											 LUO Y R, YU S Q, ZHANG Z D, et al. Re-discussion on what is activation energy: definition, explanation, and confusing physical quantities of arrhenius activation energy[J]. Univ Chem, 2010, 25(3): 35-42.
											 											 | 
										
																													
																						| 2 | 
																						 
											 MAO Z, CAMPBELL C T. Apparent activation energies in complex reaction mechanisms: a simple relationship via degrees of rate control[J]. ACS Catal, 2019, 9(10): 9465-9473.
											 											 | 
										
																													
																						| 3 | 
																						 
											 CARVALHO-SILVA V H, COUTINHO N D, AQUILANTI V. Temperature dependence of rate processes beyond arrhenius and eyring: activation and transitivity[J]. Front Chem, 2019, 7: 380.
											 											 | 
										
																													
																						| 4 | 
																						 
											 PHIMMAVONG S. Effect of concentration on reaction speed[J]. Int J Pap Adv Sci Rev, 2020, 1(1): 21-29.
											 											 | 
										
																													
																						| 5 | 
																						 
											 MOHAMADPOUR F, AMANI A M. Photocatalytic systems: reactions, mechanism, and applications[J]. RSC Adv, 2024, 14(29): 20609-20645.
											 											 | 
										
																													
																						| 6 | 
																						 
											 傅献彩, 沈文霞, 姚天扬, 等. 物理化学. 第五版[M]. 北京: 高等教育出版社, 2006.
											 											 | 
										
																													
																						 | 
																						 
											 FU X C, SHEN W X, YAO T Y, et al. Physical chemistry.5th ed[M]. Beijing: Higher Education Press, 2006.
											 											 | 
										
																													
																						| 7 | 
																						 
											 SANTANILLA A B, REGALADO E L, PEREIRA T, et al. Organic chemistry: nanomole-scale high-throughput chemistry for the synthesis of complex molecules[J]. Science, 2015, 347(6217): 49-53.
											 											 | 
										
																													
																						| 8 | 
																						 
											 刘海臣, 卓金武, 吴国光. 基于人工神经网络的茶叶咖啡因提取条件的优化[J]. 应用化学, 2007, 24(4): 457-460.
											 											 | 
										
																													
																						 | 
																						 
											 LIU H C, ZHUO J W, WU G G. Optimization of extraction conditions for caffeine from tea based on artificial neural network[J]. Chin J Appl Chem, 2007, 24(4): 457-460.
											 											 | 
										
																													
																						| 9 | 
																						 
											 徐爽, 张钰霜, 杨嘉和, 等. 基于人工神经网络优化米酒糟淀粉水解条件研究[J]. 中国酿造, 2024, 43(8): 237-242.
											 											 | 
										
																													
																						 | 
																						 
											 XU S, ZHANG Y S, YANG J H, et al. Study on optimization of rice wine lees starch hydrolysis conditions based on artificial neural network[J]. China Brew, 2024, 43(8): 237-242.
											 											 | 
										
																													
																						| 10 | 
																						 
											 渠一聪, 张绍绒, 罗理勇, 等. 基于人工神经网络耦合遗传算法(BP-GA)优化茶氨酸-葡萄糖美拉德反应的条件[J]. 食品工业科技, 2023, 44(24): 183-192
											 											 | 
										
																													
																						 | 
																						 
											 QU Y C, ZHANG S R, LUO L Y, et al. Optimization of theanine-glucose maillard reaction conditions based on artificial neural network coupled genetic algorithm (BP-GA)[J]. Sci Technol Food Ind, 2023, 44(24): 183-192.
											 											 | 
										
																													
																						| 11 | 
																						 
											 MCMULLEN J P, STONE M T, BUCHWALD S L, et al. An integrated microreactor system for self-optimization of a heck reaction: from micro-to mesoscale flow systems[J]. Angew Chem Int Ed Engl, 2010, 49(39): 7076-7080.
											 											 | 
										
																													
																						| 12 | 
																						 
											 BOURNE R A, SKILTON R A, PARROTT A J, et al. Adaptive process optimization for continuous methylation of alcohols in supercritical carbon dioxide[J]. Org Process Res Dev, 2011, 15: 932-938.
											 											 | 
										
																													
																						| 13 | 
																						 
											 CORTÉS-BORDA D, WIMMER E, GOUILLEUX B, et al. An autonomous self-optimizing flow reactor for the synthesis of natural product carpanone[J]. J Org Chem, 2018, 83(23): 14286-14299.
											 											 | 
										
																													
																						| 14 | 
																						 
											 CORTÉS-BORDA D, KUTTONOVA K V, JAMET C, et al. Optimizing the Heck-Matsuda reaction in flow with a constraint-adapted direct search algorithm[J]. Org Process Res Dev, 2016, 20(11): 1979-1987.
											 											 | 
										
																													
																						| 15 | 
																						 
											 MOORE J S, JENSEN K F. Automated multitrajectory method for reaction optimization in a microfluidic system using online IR analysis[J]. Org Process Res Dev, 2012, 16(8): 1409-1415.
											 											 | 
										
																													
																						| 16 | 
																						 
											 SHIELDS B J, STEVENS J, LI J, et al. Bayesian reaction optimization as a tool for chemical synthesis[J]. Nature, 2021, 590: 89-96.
											 											 | 
										
																													
																						| 17 | 
																						 
											 MALU M, DASARATHY G, SPANIAS A, et al. Bayesian optimization in high-dimensional spaces: a brief survey: the 2021 12th IISA[C]. Chania Crete, Greece: 2021: 1-8.
											 											 | 
										
																													
																						| 18 | 
																						 
											 ALHIJAWI B, AWAJAN A. Genetic algorithms: theory, genetic operators, solutions, and applications[J]. Evol Intell, 2024, 17(3): 1245-1256.
											 											 | 
										
																													
																						| 19 | 
																						 
											 KATOCH S, CHAUHAN S S, KUMAR V. A review on genetic algorithm: past, present, and future[J]. Multimed Tools App, 2021, 80: 8091-8126.
											 											 | 
										
																													
																						| 20 | 
																						 
											 PERERA D, TUCKER J W, BRAHMBHATT S, et al. A platform for automated nanomole-scale reaction screening and micromole-scale synthesis in flow[J].Science, 2018, 359(6374): 429-434.
											 											 | 
										
																													
																						| 21 | 
																						 
											 FOX R J, CUNIERE N L, BAKRANIA L, et al. C—H arylation in the formation of a complex pyrrolopyridine, the commercial synthesis of the potent JAK2 inhibitor, BMS-9115433[J]. J Org Chem, 2019, 84(8): 4661-4669.
											 											 | 
										
																													
																						| 22 | 
																						 
											 JI Y, PLATA R E, REGENS C S, et al. Mono-oxidation of bidentate bis-phosphines in catalyst activation: kinetic and mechanistic studies of a Pd/xantphos-catalyzed C—H functionalization[J]. J Am Chem Soc, 2015, 137(41): 13272-13281.
											 											 |