1 |
尚成新, 郝俊生. 高校化学实验课程的作用及改革方向探索[J]. 化工时刊, 2020, 34(10): 34-37.
|
|
SHANG C X, HAO J S. Exploration of the role and reform direction of college chemistry experiment courses[J]. Chem Ind Times, 2020, 34(10): 34-37.
|
2 |
岳爽, 朱延松, 徐良骥. 新能源背景下动力工程及工程热物理专业实践教学改革与探索[J]. 广东化工, 2024, 51(4): 169-170.
|
|
YUE S, ZHU Y S, XU L J. Reform and exploration of practical teaching for power engineering and engineering thermal physics under the background of new energy[J]. Guangdong Chem Ind, 2024, 51(4): 169-170.
|
3 |
许恒辉, 李真, 黄云辉. 面向新材料强国战略的新能源材料与器件课程教学改革与实践[J]. 中国现代教育装备, 2024(13): 107-109.
|
|
XU H H, LI Z, HUANG Y H. Educational reform and practice of new energy materials and devices curriculum facing the strategy of new materials powerful country[J]. China Modern Educ Equip, 2024(13): 107-109.
|
4 |
赵恒利, 自兴发, 刘廷森. 新工科下“新能源概论”课程思政教学改革与创新实践研究[J]. 楚雄师范学院学报, 2024, 39(3): 155-160.
|
|
ZHAO H L, ZI X F, LIU T S. Research on the reform and innovative practice of ideological and political education in the course introduction to new energy[J]. J Chuxiong Norm Univ, 2024, 39(3): 155-160.
|
5 |
周丹彤. 绿色低碳理念融入“新能源材料”课程的教学改革[J]. 云南化工, 2024, 51(4): 213-216.
|
|
ZHOU D T. Teaching reform of green and low carbon concepts integration in new energy materials course[J]. Yunnan Chem Technol, 2024, 51(4): 213-216.
|
6 |
SHI D, ADINOLFI V, COMIN R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals[J]. Science, 2015, 347(6221): 519-522.
|
7 |
National Renewable Energy Laboratory (NREL), Best Research-Cell Efficiency Chart (US Department of Energy, 2023); www.nrel.gov/pv/interactive-cell-efficiency.html.[EB/OL].
|
8 |
DING B, DING Y, PENG J, et al. Dopant-additive synergism enhances perovskite solar modules[J]. Nature, 2024, 628: 299-305.
|
9 |
LI F, DENG X, SHI Z, et al. Hydrogen-bond-bridged intermediate for perovskite solar cells with enhanced efficiency and stability[J]. Nat Photonics, 2023, 17(6): 478-484.
|
10 |
YAN L, HUANG H, CUI P, et al. Fabrication of perovskite solar cells in ambient air by blocking perovskite hydration with guanabenz acetate salt[J]. Nat Energy, 2023, 8(10): 1158-1167.
|
11 |
LI C, WANG X, BI E, et al. Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells[J]. Science, 2023, 379(6633): 690-694.
|
12 |
HUANG Z, BAI Y, HUANG X, et al. Anion-π interactions suppress phase impurities in FAPbI3 solar cells[J]. Nature, 2023, 623(7987): 531-537.
|
13 |
ZHANG H, PFEIFER L, ZAKEERUDDIN S M, et al. Tailoring passivators for highly efficient and stable perovskite solar cells[J]. Nat Rev Chem, 2023, 7(9): 632-652.
|
14 |
WANG F, CAO Y, CHEN C, et al. Materials toward the upscaling of perovskite solar cells: progress, challenges, and strategies[J]. Adv Funct Mater, 2018, 28(52): 1803753.
|
15 |
SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells[J]. J Appl Phys, 1961, 32(3): 510-519.
|
16 |
JUNG K H, SEO J Y, LEE S, et al. Solution-processed SnO2 thin film for a hysteresis-free planar perovskite solar cell with a power conversion efficiency of 19.2%[J]. J Mater Chem A, 2017, 5(47): 24790-24803.
|
17 |
SHI S, LI J, BU T, et al. Room-temperature synthesized SnO2 electron transport layers for efficient perovskite solar cells[J]. RSC Adv, 2019, 9(18): 9946-9950.
|
18 |
YOO J J, SEO G, CHUA M R, et al. Efficient perovskite solar cells via improved carrier management[J]. Nature, 2021, 590(7847): 587-593.
|
19 |
SUN R, TIAN Q, LI M, et al. Over 24% efficient poly(vinylidene fluoride) (PVDF)-coordinated perovskite solar cells with a photovoltage up to 1.22 V[J]. Adv Funct Mater, 2023, 33(6): 2210071.
|