应用化学 ›› 2024, Vol. 41 ›› Issue (12): 1780-1789.DOI: 10.19894/j.issn.1000-0518.240173
收稿日期:
2024-05-30
接受日期:
2024-08-15
出版日期:
2024-12-01
发布日期:
2025-01-02
通讯作者:
贺洁为
基金资助:
Jie-Wei HE1(), Shao-Wei DUAN2, Xiao-Chuan LI1
Received:
2024-05-30
Accepted:
2024-08-15
Published:
2024-12-01
Online:
2025-01-02
Contact:
Jie-Wei HE
About author:
373652240@qq.comSupported by:
摘要:
相变储能材料具有储能密度大、性能稳定、可循环使用和对环境友好等优点,在建筑领域具有广阔的应用前景。 以棕榈酸甲酯-月桂酸共熔相变材料为研究对象,以白炭黑、十二醇作为稳定剂,以氢化聚苯乙烯-丁二烯-聚苯乙烯(SEBS)作为支撑材料,研究不同原料配比对相变材料的相变温度和相变潜热的影响规律,并采用微胶囊技术将棕榈酸甲酯-月桂酸共熔相变材料与磷石膏建筑材料相结合,制作相变模拟房间,探究其在建筑领域的应用可行性。 研究结果表明, m(棕榈酸甲酯)∶m(月桂酸)=6∶4时,其相变温度为24.5~28.5 ℃和相变潜热为172.0 kJ/kg均适用于建筑领域; 相变材料熔融过程中的原始相变焓为172.0 kJ/kg,200次循环后变为167.3 kJ/kg,导热系数为0.256 W/(m·K); 没有添加相变材料的模拟房间在红外灯模拟太阳光照射下无论是升温还是降温均要比加入有机共熔相变材料的模拟房间要快,相变储能材料的掺入对建筑室内温度具有明显的调控效果。
中图分类号:
贺洁为, 段绍伟, 李小川. 用于建筑节能形状稳定相变材料的设计与应用[J]. 应用化学, 2024, 41(12): 1780-1789.
Jie-Wei HE, Shao-Wei DUAN, Xiao-Chuan LI. Design and Application Research of Shape-Stabilized Phase Change Materials for Building Energy Conservation[J]. Chinese Journal of Applied Chemistry, 2024, 41(12): 1780-1789.
No | m(raw material)/g∣w(raw material)/% | |||||
---|---|---|---|---|---|---|
Na2SO4·10H2O | Na2HPO4·12H2O | KCl | CMC | Deionized water | Graphite | |
1 | 2.100∣19.4 | 6.303∣58.2 | 0.427∣3.9 | 0.500∣4.6 | 1.000∣9.2 | 0.500∣4.6 |
2 | 2.000∣20.1 | 6.000∣61.3 | 0.500∣5.1 | 0.090∣0.9 | 0.700∣7.2 | 0.500∣5.1 |
3 | 2.500∣23.2 | 6.500∣60.4 | 0.500∣4.6 | 0.070∣0.7 | 0.700∣6.5 | 0.500∣4.6 |
表1 无机相变材料配比
Table 1 Inorganic phase change material raw material ratio
No | m(raw material)/g∣w(raw material)/% | |||||
---|---|---|---|---|---|---|
Na2SO4·10H2O | Na2HPO4·12H2O | KCl | CMC | Deionized water | Graphite | |
1 | 2.100∣19.4 | 6.303∣58.2 | 0.427∣3.9 | 0.500∣4.6 | 1.000∣9.2 | 0.500∣4.6 |
2 | 2.000∣20.1 | 6.000∣61.3 | 0.500∣5.1 | 0.090∣0.9 | 0.700∣7.2 | 0.500∣5.1 |
3 | 2.500∣23.2 | 6.500∣60.4 | 0.500∣4.6 | 0.070∣0.7 | 0.700∣6.5 | 0.500∣4.6 |
No | m(raw material)/g∣w(raw material)/% | ||||
---|---|---|---|---|---|
C17H34O2 | C12H24O2 | C12H26O | SiO2 | SEBS | |
1 | 1∣9.6 | 9∣86.5 | 0.1∣1.0 | 0.1∣1.0 | 0.2∣1.9 |
2 | 2∣19.2 | 8∣77.0 | 0.1∣1.0 | 0.1∣1.0 | 0.2∣1.9 |
3 | 3∣28.9 | 7∣67.3 | 0.1∣1.0 | 0.1∣1.0 | 0.2∣1.9 |
4 | 4∣38.5 | 6∣57.7 | 0.1∣1.0 | 0.1∣1.0 | 0.2∣1.9 |
5 | 5∣48.1 | 5∣48.1 | 0.1∣1.0 | 0.1∣1.0 | 0.2∣1.9 |
6 | 6∣57.7 | 4∣38.5 | 0.1∣1.0 | 0.1∣1.0 | 0.2∣1.9 |
7 | 7∣67.3 | 3∣28.9 | 0.1∣1.0 | 0.1∣1.0 | 0.2∣1.9 |
8 | 8∣77.0 | 2∣19.2 | 0.1∣1.0 | 0.1∣1.0 | 0.2∣1.9 |
9 | 9∣86.5 | 1∣9.6 | 0.1∣1.0 | 0.1∣1.0 | 0.2∣1.9 |
表2 有机相变材料原料配比
Table 2 Organic phase change material raw material ratio
No | m(raw material)/g∣w(raw material)/% | ||||
---|---|---|---|---|---|
C17H34O2 | C12H24O2 | C12H26O | SiO2 | SEBS | |
1 | 1∣9.6 | 9∣86.5 | 0.1∣1.0 | 0.1∣1.0 | 0.2∣1.9 |
2 | 2∣19.2 | 8∣77.0 | 0.1∣1.0 | 0.1∣1.0 | 0.2∣1.9 |
3 | 3∣28.9 | 7∣67.3 | 0.1∣1.0 | 0.1∣1.0 | 0.2∣1.9 |
4 | 4∣38.5 | 6∣57.7 | 0.1∣1.0 | 0.1∣1.0 | 0.2∣1.9 |
5 | 5∣48.1 | 5∣48.1 | 0.1∣1.0 | 0.1∣1.0 | 0.2∣1.9 |
6 | 6∣57.7 | 4∣38.5 | 0.1∣1.0 | 0.1∣1.0 | 0.2∣1.9 |
7 | 7∣67.3 | 3∣28.9 | 0.1∣1.0 | 0.1∣1.0 | 0.2∣1.9 |
8 | 8∣77.0 | 2∣19.2 | 0.1∣1.0 | 0.1∣1.0 | 0.2∣1.9 |
9 | 9∣86.5 | 1∣9.6 | 0.1∣1.0 | 0.1∣1.0 | 0.2∣1.9 |
No | Wax melting point/℃ | m(raw material)/g∣w(raw material)/% | |
---|---|---|---|
Wax | SEBS | ||
1 | 20 | 16∣80.0 | 4∣20.0 |
2 | 32 | 16∣80.0 | 4∣20.0 |
3 | 48 | 16∣80.0 | 4∣20.0 |
表3 相变包覆材料的原料配比
Table 3 Material ratio of phase change encapsulation materials
No | Wax melting point/℃ | m(raw material)/g∣w(raw material)/% | |
---|---|---|---|
Wax | SEBS | ||
1 | 20 | 16∣80.0 | 4∣20.0 |
2 | 32 | 16∣80.0 | 4∣20.0 |
3 | 48 | 16∣80.0 | 4∣20.0 |
No | m(raw material)/g∣w(raw material)/% | Phase change material (piece) | m(raw material)/g∣w(raw material)/% | Phase change material (piece) | ||
---|---|---|---|---|---|---|
CaHPO4·0.5H2O | Deionized water | CaHPO4·0.5H2O | Deionized water | |||
1 | 18.0∣57.1 | 13.5∣42.9 | 0 | 149.4∣57.1 | 112.1∣42.9 | 0 |
2 | 15.5∣57.2 | 11.6∣42.8 | 4 | 128.7∣57.2 | 96.3∣42.8 | 33 |
3 | 14.2∣57.0 | 10.7∣43.0 | 6 | 117.9∣57.0 | 88.8∣43.0 | 50 |
4 | 12.9∣56.8 | 9.8∣43.0 | 8 | 107.1∣56.8 | 81.4∣43.2 | 67 |
表4 模型砖原料配比
Table 4 Raw material ratio of model bricks
No | m(raw material)/g∣w(raw material)/% | Phase change material (piece) | m(raw material)/g∣w(raw material)/% | Phase change material (piece) | ||
---|---|---|---|---|---|---|
CaHPO4·0.5H2O | Deionized water | CaHPO4·0.5H2O | Deionized water | |||
1 | 18.0∣57.1 | 13.5∣42.9 | 0 | 149.4∣57.1 | 112.1∣42.9 | 0 |
2 | 15.5∣57.2 | 11.6∣42.8 | 4 | 128.7∣57.2 | 96.3∣42.8 | 33 |
3 | 14.2∣57.0 | 10.7∣43.0 | 6 | 117.9∣57.0 | 88.8∣43.0 | 50 |
4 | 12.9∣56.8 | 9.8∣43.0 | 8 | 107.1∣56.8 | 81.4∣43.2 | 67 |
No | m(raw material)/g∣w(raw material)/% | Phase transition temperature/℃ | Latent heat of phase transformation/(kJ·kg-1) | |
---|---|---|---|---|
C17H34O2 | C12H24O2 | |||
1 | 1∣9.6 | 9∣86.5 | 34.5~41.5 | 187.0 |
2 | 2∣19.2 | 8∣77.0 | 31.0~37.5 | 184.0 |
3 | 3∣28.9 | 7∣67.3 | 28.0~36.0 | 181.0 |
4 | 4∣38.5 | 6∣57.7 | 26.5~33.5 | 178.0 |
5 | 5∣48.1 | 5∣48.1 | 25.5~32.0 | 175.0 |
6 | 6∣57.7 | 4∣38.5 | 24.5~28.5 | 172.0 |
7 | 7∣67.3 | 3∣28.9 | 23.5~27.5 | 169.0 |
8 | 8∣77.0 | 2∣19.2 | 21.5~24.5 | 166.0 |
9 | 9∣86.5 | 1∣9.6 | / | 163.0 |
表5 不同原料配比的相变材料相变温度及相变潜热
Table 5 Phase transition temperature and latent heat of phase change materials with different raw material ratios
No | m(raw material)/g∣w(raw material)/% | Phase transition temperature/℃ | Latent heat of phase transformation/(kJ·kg-1) | |
---|---|---|---|---|
C17H34O2 | C12H24O2 | |||
1 | 1∣9.6 | 9∣86.5 | 34.5~41.5 | 187.0 |
2 | 2∣19.2 | 8∣77.0 | 31.0~37.5 | 184.0 |
3 | 3∣28.9 | 7∣67.3 | 28.0~36.0 | 181.0 |
4 | 4∣38.5 | 6∣57.7 | 26.5~33.5 | 178.0 |
5 | 5∣48.1 | 5∣48.1 | 25.5~32.0 | 175.0 |
6 | 6∣57.7 | 4∣38.5 | 24.5~28.5 | 172.0 |
7 | 7∣67.3 | 3∣28.9 | 23.5~27.5 | 169.0 |
8 | 8∣77.0 | 2∣19.2 | 21.5~24.5 | 166.0 |
9 | 9∣86.5 | 1∣9.6 | / | 163.0 |
图1 样品凝固降温曲线A. Corresponds to Group 1; B. Corresponds to Group 2; C. Corresponds to Group 3; D. Corresponds to Group 4; E. Corresponds to Group 5; F. Corresponds to Group 6; G. Corresponds to Group 7; H. Corresponds to Group 8
Fig.1 Sample solidification cooling curve
Phase change materials | Number of cycles/frequency | Latent heat/(kJ·kg-1) |
---|---|---|
C17H34O2-C12H24O2 | 0 | 172.0 |
100 | 169.6 | |
200 | 167.3 |
表6 不同热循环次数后相变材料的热性能
Table 6 Thermal performance of CCTPF-PW after different cycles
Phase change materials | Number of cycles/frequency | Latent heat/(kJ·kg-1) |
---|---|---|
C17H34O2-C12H24O2 | 0 | 172.0 |
100 | 169.6 | |
200 | 167.3 |
Samples | λ/(W·m-1·K-1) |
---|---|
SiO2·nH2O | 0.075 |
C17H34O2-C12H24O2 | 0.256 |
C17H34O2-C12H24O2/SiO2 | 0.145 |
表7 相变材料的导热系数
Table 7 Thermal conductivity of phase change materials
Samples | λ/(W·m-1·K-1) |
---|---|
SiO2·nH2O | 0.075 |
C17H34O2-C12H24O2 | 0.256 |
C17H34O2-C12H24O2/SiO2 | 0.145 |
图6 40 ℃下包覆与不包覆相变材料形状稳定情况A. Represents the melting state of phase change materials; B. The unmelted state of the coating material
Fig.6 Shape stability of coated and uncoated phase change materials at 40 ℃
图7 模拟房间内温度随时间的变化
Fig.7 Simulation of the variation of temperature in a room over timeNote: Red, blue, green, and purple respectively represent the temperature changes over time in a simulated room constructed with no added phase change material bricks, 4 added small ball phase change material bricks, 6 added small ball phase change material bricks, and 8 added small ball phase change material bricks
图8 在40 ℃下模拟砖块表面泄漏情况A. The brick with added uncoated phase change material; B. The brick with added coated phase change material
Fig.8 Simulation of leakage on the surface of bricks at 40 ℃
图9 在40 ℃下模拟砖块内部相变材料稳定情况A. The brick with added uncoated phase change material; B. The brick with added coated phase change material
Fig.9 Simulation of the stability of phase change materials inside bricks at 40 ℃
1 | 张华民. 高效大规模化学储能技术研究开发现状及展望[J]. 电源技术, 2007(8): 587-591. |
ZHANG H M. Research and development status and prospects of efficient large scale chemical energy storage technology[J]. Power Suppl Technol, 2007(8): 587-591. | |
2 | 李国俭. 相变储能材料开发与封装技术研究进展[J]. 热力发电, 2023, 52(2): 23-31. |
LI G J. Research progress in the development and packaging technology of phase change energy storage materials[J]. Therm Power Generation, 2023, 52(2): 23-31. | |
3 | 陈中华, 马丽丽, 余飞. 有机相变储能材料及其复合化研究进展[J]. 化工新型材料, 2010(9): 42-44, 64. |
CHEN Z H, MA L L, YU F. Research progress on organic phase change energy storage materials and their composites[J]. New Chem Mater, 2010(9): 42-44, 64. | |
4 | 陈爱英, 汪学英, 曹学增. 相变储能材料的研究进展与应用[J]. 材料导报, 2003, 17(5): 42-44, 72. |
CHEN A Y, WANG X Y, CAO X Z. Research progress and application of phase change energy storage materials[J]. Mater Rev, 2003, 17(5): 42-44, 72. | |
5 | 曾关跃, 高专, 熊玉竹. 多壁碳纳米管负载银/微晶纤维素定型复合相变材料的制备及性能研究[J]. 材料导报, 2023(23): 231-236. |
ZENG G Y, GAO Z, XIONG Y Z. Preparation and performance study of multi walled carbon nanotube loaded silver/microcrystalline cellulose shaped composite phase change materials[J]. Mater Introduct, 2023(23): 231-236. | |
6 | REDDY V J, AKHILA K, DIXIT P, et al. Thermal buffering performance evaluation of fatty acids blend/fatty alcohol based eutectic phase change material and simulation[J]. J Energy Storage, 2021, 38: 102499. |
7 | 叶志林, 魏婷, 易红玲, 等. 癸酸-棕榈酸/膨胀珍珠岩定型相变材料的制备与热性能[J]. 华东理工大学学报(自然科学版), 2017, 43(4): 495-500. |
YE Z L, WEI T, YI H L, et al. Preparation and thermal properties of decanoic palmitic acid/expanded perlite phase change materials[J]. J East China Univ Sci Technol (Nat Sci Ed), 2017, 43(4): 495-500. | |
8 | 舒钊, 钟珂, 肖鑫, 等. 硅藻土基脂肪酸定型相变材料的制备与表征[J]. 硅酸盐学报, 2022, 50(6): 1652-1660. |
SHU Z, ZHONG K, XIAO X, et al. Preparation and characterization of diatomaceous earth based fatty acid phase change materials[J]. J Chin Ceramic Soc, 2022, 50(6): 1652-1660. | |
9 | 陈云博, 李昕怡, 毛志平, 等. 纳米甲壳素基Pickering乳液辅助构筑相变微胶囊[J]. 日用化学工业(中英文), 2022, 52(12):1286-1292. |
CHEN Y B, LI X Y, MAO Z P, et al. Construction of phase change microcapsules assisted by nano chitin based Pickering lotion[J]. Daily Chem Ind (Eng Chin), 2022, 52(12): 1286-1292. | |
10 | 徐众, 李军, 吴恩辉, 等. 添加提钒尾渣对膨胀石墨/石蜡复合相变材料稳定性和导电性的影响[J]. 应用化学, 2022, 39(3): 461-469. |
XU Z, LI J, WU E H, et al. The effect of adding vanadium extraction tailings on the stability and conductivity of expanded graphite/paraffin composite phase change materials[J]. Chin J Appl Chem, 2022, 39(3): 461-469. | |
11 | XIANG B, YANG Z B, ZHANG J. ASA/SEBS/paraffin composites as phase change material for potential cooling and heating applications in building[J]. Polym Adv Technol, 2021, 32(1): 420-427. |
12 | 吴秋萍, 蔡昆廷, 王元康, 等. Co/C微波吸收性能及Co/C-聚氨酯相变复合材料的微波-热转换性能[J]. 应用化学, 2021, 38(12): 1588-1598. |
WU Q P, CAI K T, WANG Y K, et al. Microwave absorption performance of Co/C and microwave thermal conversion performance of Co/C-polyurethane phase change composite materials[J]. Chin J Appl Chem, 2021, 38 (12): 1588-1598. | |
13 | 陈曦, 郑楠, 刘凌志, 等. 长链烷酸接枝羟丙基纤维素相变材料的制备及其性能[J]. 应用化学, 2015, 32(5): 535-541. |
CHEN X, ZHENG N, LIU L Z, et al. Preparation and properties of long-chain alkanoic acid grafted hydroxypropyl cellulose phase change materials[J]. Chin J Appl Chem, 2015, 32(5): 535-541. | |
14 | 吴秋萍, 蔡昆廷, 王元康, 等. Co/C微波吸收性能及Co/C-聚氨酯相变复合材料的微波-热转换性能[J]. 应用化学, 2021, 38(12): 969-975. |
WU Q P, CAI K T, WANG Y K, et al. Microwave absorption performance of Co/C and microwave thermal conversion performance of Co/C-polyurethane phase change composite materials[J]. Chin J Appl Chem, 2021, 38(12): 969-975. |
[1] | 徐众, 李军, 吴恩辉, 蒋燕. 添加提钒尾渣对膨胀石墨/石蜡复合相变材料稳定性和导电性的影响[J]. 应用化学, 2022, 39(3): 461-469. |
[2] | 吴秋萍, 蔡昆廷, 王元康, 孙凯, 杨金波, 韩松柏, 刘蕴韬. Co/C微波吸收性能及Co/C-聚氨酯相变复合材料的微波-热转换性能[J]. 应用化学, 2021, 38(12): 0-0. |
[3] | 吴秋萍, 蔡昆廷, 王元康, 孙凯, 杨金波, 韩松柏, 刘蕴韬. Co/C微波吸收性能及Co/C-聚氨酯相变复合材料的微波-热转换性能[J]. 应用化学, 2021, 38(12): 1588-1598. |
[4] | 颜品萍, 罗富彬, 黄宝铨, 肖荔人, 钱庆荣, 李红周, 陈庆华. 导热增强聚乙二醇相变复合材料的制备及其性能[J]. 应用化学, 2020, 37(1): 46-53. |
[5] | 金翼,黄心宇,吴文昊,宋鹏翔,杨岑玉,姚锐敏,邹如强. 换热器与相变材料的兼容性研究进展[J]. 应用化学, 2016, 33(12): 1366-1374. |
[6] | 陈曦, 郑楠, 刘凌志, 门永锋. 长链烷酸接枝羟丙基纤维素相变材料的制备及其性能[J]. 应用化学, 2015, 32(5): 535-541. |
[7] | 刘先之, 刘凌志, 门永锋. 石蜡相变微胶囊的制备与表征[J]. 应用化学, 2012, 29(01): 9-13. |
[8] | 杨常光, 兰孝征, 纪祥娟. 界面聚合法制备正二十烷微胶囊化相变储热材料[J]. 应用化学, 2008, 25(10): 1209-1212. |
[9] | 曹琪, 刘朋生. 交联型聚氨酯固-固相变材料的相变性能及形态[J]. 应用化学, 2007, 24(6): 652-655. |
[10] | 王学晨, 张兴祥, 张晓春, 樊耀峰, 牛建津. pH值对正十八烷微胶囊合成与性能的影响[J]. 应用化学, 2005, 22(9): 942-945. |
[11] | 郑文辉, 方美华, 程四清, 宋光森. 微胶囊化石蜡的制备和热性能[J]. 应用化学, 2004, 21(2): 200-202. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||