Please wait a minute...
应用化学
今天是
应用化学  2020, Vol. 37 Issue (1): 46-53    DOI: 10.11944/j.issn.1000-0518.2020.01.190209
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
导热增强聚乙二醇相变复合材料的制备及其性能
颜品萍ab,罗富彬ab,黄宝铨ab,肖荔人bc,钱庆荣ab,李红周a*(),陈庆华abd*()
a福建师范大学环境科学与工程学院 福州 350007
b聚合物资源绿色循环利用教育部工程研究中心 福州 350007
c福建师范大学化学与材料学院 福州 350007
d福建师范大学福清分校 福州 350300
Properties of Thermal Conductivity Enhanced Polyethylene Glycol-Based Phase Change Composites
YAN Pinpingab,LUO Fubinab,HUANG Baoquanab,XIAO Lirenbc,QIAN Qingrongab,LI Hongzhoua*(),CHEN Qinghuaabd*()
aCollege of Environmental Science and Engineering,Fujian Normal University,Fuzhou 350007,China
bPolymer Resources Green Recycling Engineering Research Center ofthe Ministry of Education,Fuzhou 350007,China
cCollege of Chemistry and Materials Science,Fujian Normal University,Fuzhou 350007,China
dFuqing Branch of Fujian Normal University,Fuzhou 350300,China
全文: PDF(3927 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

本文以聚乙二醇(PEG)为相变材料,通过添加不同的无机填料,采用熔融共混浇筑方式制备了导热增强型相变复合材料。 通过扫描电子显微镜(SEM)、热常数分析仪、差示扫描量热仪(DSC)、红外热成像和热重分析仪研究了所制备复合材料的微观结构、导热性能与相变过程。 研究结果表明,相比于碳酸钙和氧化铝,在相同添加含量下,氮化硼(BN)可有效提高PEG的导热系数,当BN质量分数为40%时,导热系数可达到3.40 W/(m·K);当填料添加量相同时,片状BN和不规则纳米碳酸钙(CaCO3)比球形氧化铝(Al2O3)对PEG具有更加优良的定型效果,在相变过程中,能够更加有效阻隔PEG的流动,保持复合材料的形状稳定性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
颜品萍
罗富彬
黄宝铨
肖荔人
钱庆荣
李红周
陈庆华
关键词 导热聚乙二醇相变材料氮化硼    
Abstract

In this study, thermally conductive phase change composites materials was prepared based on polyethylene glycol (PEG) and inorganic fillers via the molten blending method. The microstructure, thermal conductivity and phase transition performance of the prepared composites were investigated by scanning electronic microscopy (SEM), thermal constant analyzer, differential scanning calorimetry (DSC), infrared thermal imaging and thermogravimetric analysis. The results show that, compared with calcium carbonate and alumina, boron nitride can more significantly improve the thermal conductivity of PEG at the same mass fraction. When the mass fraction of BN is 40%, the thermal conductivity of composites can reach 3.40 W/(m·K). Simultaneously, flake boron nitride can effectively limit the leakage of PEG and maintain the initially shapes well upon long time heating, and maintain the shape stability of the composite.

Key wordsthermal conductivity    polyethylene glycol    phase change materials    boron nitride
收稿日期: 2019-07-24           接受日期: 2019-10-10
基金资助:国家自然科学基金(51903049)和福建师范大学泉港石化研究院专项资金(2018YJY03)项目资助
通讯作者: 李红周,陈庆华     E-mail: lihongzhou@fjnu.edu.cn;cqhuar@126.com
引用本文:   
颜品萍, 罗富彬, 黄宝铨, 肖荔人, 钱庆荣, 李红周, 陈庆华. 导热增强聚乙二醇相变复合材料的制备及其性能[J]. 应用化学, 2020, 37(1): 46-53.
AN Pinping, LUO Fubin, HUANG Baoquan, XIAO Liren, QIAN Qingrong, LI Hongzhou, CHEN Qinghua. Properties of Thermal Conductivity Enhanced Polyethylene Glycol-Based Phase Change Composites. Chinese Journal of Applied Chemistry, 2020, 37(1): 46-53.
链接本文:  
http://yyhx.ciac.jl.cn/CN/10.11944/j.issn.1000-0518.2020.01.190209      或      http://yyhx.ciac.jl.cn/CN/Y2020/V37/I1/46
图1样品的SEM照片
Fig.1SEM images of samples
A.Al2O3; B.BN; C.CaCO3; D.PEG/Al2O3-40; E.PEG/BN-40; F.PEG/CaCO3-40
图2样品的导热系数
Fig.2Thermal conductivity of samples
A.PEG, PEG/CaCO3-20, PEG/CaCO3-30, PEG/CaCO3-40; B.PEG, PEG/BN-20, PEG/BN-30 and PEG/BN-40; C.PEG, PEG/Al2O3-20, PEG/Al2O3-30, PEG/Al2O3-40; D.PEG, PEG/CaCO3-40, PEG/Al2O3-40 and PEG/BN-40
图3PEG、PEG/BN-40、PEG/Al2O3-40和PEG/CaCO3-40的降温(A)和升温(B)DSC曲线;PEG、PEG/BN-20、PEG/BN-30和PEG/BN-40的降温(C)和升温(D)的DSC曲线
Fig.3DSC curves for cooling(A) and heating(B) of pure PEG, PEG/BN-40, PEG/Al2O3-40 and PEG/CaCO3-40; cooling(C) and heating(D) of pure PEG, PEG/BN-20, PEG/BN-30 and PEG/BN-40
Sample Tc/℃ ΔHc/(J·g-1) Theoretical value/(J·g-1) Tm/℃ ΔHm/(J·g-1) Theoretical value/(J·g-1)
PEG 39.32 154.80 - 59.98 158.30 -
PEG/BN-20 38.38 118.40 123.84 61.91 120.20 126.64
PEG/BN-30 41.36 107.9 108.36 62.60 108.5 110.81
PEG/BN-40 35.32 69.76 92.88 56.96 73.34 94.98
PEG/Al2O3-40 37.97 104.30 92.88 61.68 106.30 94.98
PEG/CaCO3-40 38.65 92.830 92.88 60.74 95.77 94.98
表1复合相变材料的储热性能
Table 1Thermal energy storage characteristics of composites PCMs
图4纯PEG、PEG / BN-40、PEG/Al2O3-40和 PEG/CaCO3-40在加热时的红外热图像(A);相应的表面温度变化(B);4个样品在经过不同时间加热后的形态(C)
Fig.4Infrared thermal images of four samples upon heating(A); the corresponding surface temperature variation(B); Morphology of PCMs(pure PEG, PEG/BN-40, PEG/Al2O3-40 and PEG/CaCO3-40) upon heating(C)
图5纯PEG、PEG/BN-20、PEG/BN-30和 PEG/BN-40在加热(A)时和降温(B)时的红外热图像,相应的表面温度变化(C,D);4个样品在经过不同时间加热后的形态(E)
Fig.5Infrared thermal images of four samples(A) upon heating and (B)upon cooling, and the corresponding surface temperature variation(C,D);Morphology of PCMs(PEG, PEG/BN-20, PEG/BN-30 and PEG/BN-40) upon heating(E)
图6PEG、PEG/BN-40、PEG/Al2O3-40 and PEG/CaCO3-40的TG(A)和DTG(B)曲线;PEG、PEG/BN-20、PEG/BN-30 and PEG/BN-40的TG(C)和DTG(D) 曲线
Fig.6TG(A) and DTG(B) curves of PEG, PEG/BN-40, PEG/Al2O3-40 and PEG/CaCO3-40; TG(C) and DTG(D) curves of PEG, PEG/BN-20, PEG/BN-30 and PEG/BN-40
[1] GAO Maotiao,WANG Chunxu,WU Xuehong,et al. Preparation of Nanographene Sheet-Paraffin Composite Phase Change Cold Storage Material and Its Thermal Properties[J]. Food Mach,2016,32(12):128-132(in Chinese). 高茂条,王春煦,吴学红,等. 纳米石墨烯片—石蜡复合相变蓄冷材料制备方法及热物性研究[J]. 食品与机械,2016,32(12):128-132.
[2] JIA Shikui,WANG Zhong,CHEN Ligui,et al. Development and Thermal Properties of Highly Shaped Polyethylene Glycol/Sisal Cellulose/Expanded Graphite Phase Change Energy Storage Materials[J]. Polym Mater Sci Eng,2017,33(1):137-141(in Chinese). 贾仕奎,王忠,陈立贵,等. 高定形聚乙二醇/剑麻纤维素/膨胀石墨相变储能材料的研制及热性能[J]. 高分子材料科学与工程,2017,33(1):137-141.
[3] CHEN Xi,ZHENG Nan,LIU Lingzhi,et al. Preparation and Properties of Long-Chain Alkanoic Acid Grafted Hydroxypropyl Cellulose Phase Change Materials[J]. Chinese J Appl Chem,2015,32(5):535-541(in Chinese). 陈曦,郑楠,刘凌志,等. 长链烷酸接枝羟丙基纤维素相变材料的制备及其性能[J]. 应用化学,2015,32(5):535-541.
[4] Wu B,Jiang Y Y,Wang Y J,et al. Study on a PEG/Epoxy Shape-Stabilized Phase Change Material:Preparation, Thermal Properties and Thermal Storage Performance[J]. Int J Heat Mass Transfer,2018,126:1134-1142.
[5] WANG Siyu,GUO Yanfeng,YU Lianghan,et al. Experimental Study on Cold Storage Performance of PEG/EG Composite Phase Change Energy Storage Materials[J]. China Plast,2018,32(4)(in Chinese). 王思宇,郭彦峰,余亮汉,等. PEG/EG复合相变储能材料蓄冷性能的实验研究[J]. 中国塑料,2018,32(4).
[6] JIA Shikui,ZHANG Xianyong,FU Lei,et al. Crystallization and Thermal Properties of GNPs/PEG Shaped Phase Change Energy Storage Materials[J]. J Shaanxi Univ Technol(Nat Sci),2017,33(1):1-5(in Chinese). 贾仕奎,张显勇,付蕾,等. GNPs/PEG定形相变储能材料的结晶及热性能研究[J]. 陕西理工大学学报(自然科学版),2017,33(1):1-5.
[7] Lin Y X,Jia Y T,Alva G,et al. Review on Thermal Conductivity Enhancement, Thermal Properties and Applications of Phase Change Materials in Thermal Energy Storage[J]. Renew Sust Energ Rev,2018,82:2730-2742.
[8] Ibrahim N I,l-Sulaiman F A,Rahman S,et al. Heat Transfer Enhancement of Phase Change Materials for Thermal Energy Storage Applications:A Critical Review[J]. Renew Sust Energ Rev,2017,74:26-50.
[9] Zhang L,Zhou K C,Wei Q P,et al. Thermal Conductivity Enhancement of Phase Change Materials with 3D Porous Diamond Foam for Thermal Energy Storage[J]. Appl Energy,2019,233:208-219.
[10] Deng Y,Li J H,Qian T T,et al. Thermal Conductivity Enhancement of Polyethylene Glycol/Expanded Vermiculite Shape-Stabilized Composite Phase Change Materials with Silver Nanowire for Thermal Energy Storage[J]. Chem Eng J, 2016,295:427-435.
[11] SHI You,YANG Bin,LU Huayang,et al. Dynamic Rheological Behavior of Graphene Nanosheet Filled HDPE/PEG Phase Change Composites[J]. Polym Mater Sci Eng,2017,10:58-62(in Chinese). 石优,杨斌,陆华阳,等. 石墨烯纳米片填充HDPE/PEG相变复合材料的动态流变行为[J]. 高分子材料科学与工程,2017,10:58-62.
[12] Zhang X G,Qiao J X,Zhang W Y,et al. Thermal Behavior of Composite Phase Change Materials Based on Polyethylene Glycol and Expanded Vermiculite with Modified Porous Carbon Layer[J]. J Mater Sci,2018,53(18):13067-13080.
[13] LIU Jie,LIU Zhiming.Preparation and Characterization of Polyethylene Glycol/Cellulose Phase Change Materials[J]. Biomass Chem Eng,2018,52(4):1-6(in Chinese). 刘洁,刘志明. 聚乙二醇/纤维素相变材料的制备及性能表征[J]. 生物质化学工程,2018,52(4):1-6.
[1] 吕文强,耿超,徐经伟. 臭氧化合成聚乙二醇醛基衍生物[J]. 应用化学, 2019, 36(1): 120-122.
[2] 李非,毛胜雪,孙越,吕成伟,安悦. 磷酸氢二钾催化多组分一锅法反应合成1,4-二氢吡喃并[2,3-c]吡唑衍生物[J]. 应用化学, 2018, 35(10): 1201-1207.
[3] 毕波, 开旺, 任丽萍, 钱华. 温控两相酸性聚合型离子液体催化胺醛缩合反应[J]. 应用化学, 2017, 34(4): 394-401.
[4] 毕波, 开旺, 任丽萍, 钱华. 温控两相酸性聚合型离子液体催化胺醛缩合反应[J]. 应用化学, 2017, 34(4): 0-0.
[5] 张丽丽, 丁慧敏, 张继堂, 许东华, 李志锋. 碳纳米管改性环氧树脂的导热和阻燃性能[J]. 应用化学, 2017, 34(1): 46-53.
[6] 江文杰, 张琳萍, 徐红, 钟毅, 隋晓锋, 毛志平. 铝镧共掺杂的氧化锌红外隐身涂料在帐篷织物上的应用[J]. 应用化学, 2016, 33(3): 313-319.
[7] 金翼,黄心宇,吴文昊,宋鹏翔,杨岑玉,姚锐敏,邹如强. 换热器与相变材料的兼容性研究进展[J]. 应用化学, 2016, 33(12): 1366-1374.
[8] 林强, 郭姝宜, 黄毅萍, 许戈文, 鲍俊杰, 程芹. 高醚化三聚氰胺甲醛树脂交联水性聚氨酯的制备与表征[J]. 应用化学, 2016, 33(10): 1154-1160.
[9] 王升, 邱娜, 张鹏超, 汤昆, 张付利. 一种含聚乙二醇非离子亲水基团的新型水溶性荧光染料的合成及细胞成像[J]. 应用化学, 2016, 33(1): 32-38.
[10] 巩凯, 王理国, 陈敬华. 离子液体中聚乙二醇维生素E琥珀酸酯的合成[J]. 应用化学, 2015, 32(6): 652-657.
[11] 陈曦, 郑楠, 刘凌志, 门永锋. 长链烷酸接枝羟丙基纤维素相变材料的制备及其性能[J]. 应用化学, 2015, 32(5): 535-541.
[12] 谭福能, 何媛媛, 隋卫平. (2-羟基-3-丁氧基)丙基-羟丙基壳聚糖/聚乙二醇互穿网络凝胶的制备及其释药作用[J]. 应用化学, 2014, 31(12): 1399-1404.
[13] 富慧, 种宁, 邱继善, 王雅晴, 田园园, 由吉春, 李勇进. 形状记忆聚偏氟乙烯/丙烯酸酯/碳纳米管纳米复合材料的导电及导热性能[J]. 应用化学, 2014, 31(01): 25-28.
[14] 赵艳青, 王宏宇, 高桂天, 齐力. 短链羟基甲基咪唑离子液体的合成与电化学性能[J]. 应用化学, 2012, 29(12): 1457-1462.
[15] 刘倩, 钱静, 王坤, 李夜平, 吴向阳. 电化学研究聚乙二醇单甲醚接枝壳聚糖的pH敏感性及对细胞色素c的控制释放[J]. 应用化学, 2012, 29(03): 340-345.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
 Chinese Journal of Applied Chemistry
地址:长春市人民大街5625号 邮编:130022
电话:0431-85262016 85262330 传真:0431-85685653 E-mail: yyhx@ciac.ac.cn