Please wait a minute...
应用化学
今天是
应用化学  2020, Vol. 37 Issue (1): 109-116    DOI: 10.11944/j.issn.1000-0518.2020.01.190200
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
二氧化硅包裹铋基黄色料的制备及其稳定性
王竹梅a,李月明a*(),万德田ab*(),左建林a,沈宗洋a,李恺a
a德镇陶瓷大学材料科学与工程学院 江西 景德镇 333403
b中国建筑材料科学研究总院绿色建筑材料国家重点实验室 北京 100024
Preparation and Stability of Silica Coated Bismuth-Based Yellow Pigments
WANG Zhumeia,LI Yueminga*(),WAN Detianab*(),ZUO Jianlina,SHEN Zongyanga,LI Kaia
aSchool of Materials Science and Engineering,Jingdezhen Ceramic Institute,Jingdezhen,Jiangxi 333001,China
bState Key Laboratory of Green Building Materials,China Building Materials Academy,Beijing 100024,China
全文: PDF(1484 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

采用沉淀法合成了主要成分为Bi0.82V0.45Mo0.55O4和Na0.5Bi0.5(MoO4)的铋基黄色料,再用水解法对色料进行SiO2包裹,制得了一系列耐酸性和耐温性均有较大幅度提高的包裹型色料。 采用X射线衍射(XRD)、透射电子显微镜(TEM)、X射线荧光光谱(XRF)、傅里叶变换红外光谱(FT-IR)等技术对色料进行了表征。 研究结果表明,在V(H2O):V(TEOS)=1:18、摩尔比n(Si)/n(Bi)=4、反应温度Tb为45 ℃、滴加水的速度vd≤0.3 mL/min的条件下,可获得厚度为100 nm左右、均匀致密的二氧化硅包裹层,且包裹色料呈鲜艳明亮的绿相黄,其色度参数L*a*b*值分别为78.85、-6.85和71.63;该条件下所得包裹色料的耐酸性和耐温性最佳,色料浸泡于1 mol/L的盐酸中30 min损失量由未包裹色料的100%降至28.25%,耐温性由未包裹色料的600 ℃提升到860 ℃。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王竹梅
李月明
万德田
左建林
沈宗洋
李恺
关键词 钼钒酸铋黄色颜料SiO2包裹型色料稳定性    
Abstract

Silica coated bismuth-based yellow pigments with better acid resistance and temperature stability were successfully prepared by hydrolysis method using Bi0.82V0.45Mo0.55O4 and Na0.5Bi0.5(MoO4) prepared by precipitation method. The as-obtained pigments were characterized by X-ray diffraction(XRD), transmission electron microscopy(TEM), X-ray fluorescence spectrometer(XRF) and Fourier transform infrared spectroscopy(FT-IR). The results showed that compact and uniform amorphous SiO2·xH2O coating layers with the thickness of around 100 nm were obtained under the volume ratio of H2O to TEOS was 18, the ratio of n(Si)/n(Bi) was 4, Tb was 45 ℃, and vd≤0.3 mL/min. The coated pigments showed the nature of bright yellow, and the values of L*, a* and b* were 78.85, -6.85 and 71.63, respectively. Compared with the uncoated pigments, the acid mass loss of coated pigments under the most optimized condition, after half an hour immersion in 1 mol/L hydrochloric acid, declined from 100% to 28.25% and the tolerable temperature was improved from 600 ℃ to 860 ℃.

Key wordsmolybdenum bismuth vanadate    yellow pigment    SiO2    coated pigment    stability
收稿日期: 2019-07-17           接受日期: 2019-10-14
基金资助:国家自然科学基金资助(51462010)项目资助
通讯作者: 李月明,万德田     E-mail: lym6329@163.com;dtwan@ctc.ac.cn
引用本文:   
王竹梅,李月明,万德田,左建林,沈宗洋,李恺. 二氧化硅包裹铋基黄色料的制备及其稳定性[J]. 应用化学, 2020, 37(1): 109-116.
WANG Zhumei,LI Yueming,WAN Detian,ZUO Jianlin,SHEN Zongyang,LI Kai. Preparation and Stability of Silica Coated Bismuth-Based Yellow Pigments. Chinese Journal of Applied Chemistry, 2020, 37(1): 109-116.
链接本文:  
http://yyhx.ciac.jl.cn/CN/10.11944/j.issn.1000-0518.2020.01.190200      或      http://yyhx.ciac.jl.cn/CN/Y2020/V37/I1/109
Sample B1 B2 B3 B4 B5 B6 B7 B8
n(Si)/n(Bi) 3 4 5 4 4 4 4 4
Tb/℃ 45 45 45 35 40 50 45 45
vd/ (mL·min-1) 0.3 0.3 0.3 0.3 0.3 0.3 0.1 0.5
表1各样品的制备工艺参数
Table 1The process parameters of each sample
图1样品B0的TEM照片
Fig.1TEM image of sample B0(uncoated)
图2样品B0的XRD图谱
Fig.2XRD pattern of of sample B0(uncoated)
Element Na Al Si V Ni Cu Mo Bi
Mass fraction/% 3.03 0.11 0.03 5.82 0.04 0.05 19.12 49.33
Molar fraction/% 13.17 0.40 0.10 11.43 0.07 0.08 19.92 23.60
表2B0样品的化学组成
Table 2Composition analysis of B0 sample
图3不同n(Si)/n(Bi)比制备的包裹色料的TEM照片
Fig.3TEM images of coated samples at n(Si)/n(Bi)=3(A), n(Si)/n(Bi)=4(B ) and n(Si)/n(Bi)=5(C)
Sample n(Si)/n(Bi) L.T./nm L* a* b* Images A.L./% Tc/℃
B0 - - 78.40 -3.20 71.38 100.00 620
B1 3 30 79.12 -6.71 71.55 58.23 840
B2 4 100 78.85 -6.85 71.63 28.25 860
B3 5 <20 78.63 -6.66 68.34 44.56 820
表3不同n(Si)/n(Bi)比制得包裹色料的色度参数、呈色、耐酸性及耐温性
Table 3CIE L*, a*, b* values, color renderings, the acid corrosion loss weight andthermal stability evaluation of samples prepared at different mole ratios of Si to Bi
图4包裹前B0和包裹后B2样品的FT-IR图
Fig.4FT-IR spectra of uncoated pigments(B0) and coated pigments(B2)
图5B0及不同n(Si)/n(Bi)比包裹色料的XRD图谱
Fig.5XRD patterns of uncoated pigments(B0) and coated pigments prepared at different Si/Bi ratios
图6不同Tb、不同vd所制备包裹色料的TEM照片
Fig.6TEM images of samples prepared at different Tb and different vd
A.B4 35 ℃, 0.3 mL/min; B.B5 40 ℃, 0.3 mL/min; C.B2 45 ℃, 0.3 mL/min; D.B6 50 ℃, 0.3 mL/min; E.B7 45 ℃, 0.1 mL/min; F.B8 45 ℃, 0.5 mL/min
Sample Tb/℃ vd/(mL·min-1) L* a* b* Image A.L./% Tc/℃
B0 - - 78.40 -3.20 71.38 100.00 620
B4 35 0.3 78.38 -6.12 71.64 58.15 780
B5 40 0.3 78.63 -6.08 71.03 43.35 820
B2 45 0.3 78.85 -6.85 71.63 28.25 860
B6 50 0.3 78.56 -6.96 71.76 45.13 820
B7 45 0.1 78.45 -6.78 71.93 28.58 860
B8 45 0.5 78.65 -6.92 71.25 49.26 820
表4不同Tbvd条件下包裹色料的色度参数、呈色、耐酸性及耐温性
Table 4CIE L*, a*, b* values, color renderings, the acid corrosion loss mass andthermal stability evaluation of samples prepared at different Tb and different vd
Sample Calcination
temperature/℃
L* a* b* Image Pore volume(pore size<2 nm)/
(cm3·g-1)
A.L./%
B0 500 78.40 -3.20 71.38 - 100
850 58.57 22.02 48.16 - 100
B2 500 78.85 -6.85 71.63 0.0068 28.25
850 78.70 -6.66 69.54 0.0097 40.39
表5未包裹色料和包裹色料煅烧前后的色度参数、呈色、微孔率和耐酸性
Table 5CIE L*, a*, b* values, color renderings, microporosity, the acidcorrosion loss mass of uncoated pigments(B0) and coated pigments(B2) before and after calcination
图7未包裹色料B0和包裹色料B2经不同温度煅烧后的XRD图
Fig.7XRD patterns of uncoated pigments(B0) and coated pigments(B2) after heat treatment at different temperatures
图8包裹色料B2样品经不同温度煅烧后的TEM照片
Fig.8TEM images of coated pigments(B2) after heat treatment at different temperatures
A.B2 500 ℃; B.B2 850 ℃
[1] Guan L,Fan J L,Zhang Y Y,et al. Facile Preparation of Highly Cost-effective BaSO4@BiVO4 Core-Shell Structured Brilliant Yellow Pigmeng[J]. Dyes Pigm,2016,128:49-53.
[2] Masui T,Honda T,Wendusu,et al. Novel and Environmentally Friendly (Bi,Ca,Zn)VO4 Yellow Pigments[J]. Dyes Pigm,2013,99:636-641.
[3] Sandhya Kumari L,Prabhakar Rao P,Narayana Pillai Radhakrishnan A,et al. Brilliant Yellow Color and Enhanced NIR Reflectance of Monoclinic BiVO4 Through Distortion in V$O^{3-}_{4}$ Terahedra[J]. Sol Energy Mater Sol Cells,2013,112:134-143.
[4] LI Rong,PEI Zhiming,ZHAO Qingyan,et al. Preparation Method of Bismuth Vanadate Pigments:CN.201310013662.8[P].2013-01-14(in Chinese). 李蓉,裴志明,赵青燕,等. 钒酸铋颜料的制备方法:中国,201310013662.8[P].2013-01-14.
[5] CHEN Jianjun,WANG Xiaowei,PENG Weiming,et al. Preparation Method of Doping Nano Bismuth Vanadate Pigments:CN. Preparation Method of Doping Nano Bismuth Vanadate Pigments:CN,201710658590.0[P].2017-08-04(in Chinese). 陈建军,王晓伟,彭伟明,等. 掺杂型纳米钒酸铋黄色颜料的制备方法:中国,201710658590.0[P].2017-08-04.
[6] TANG Anping,XU Guorong,ZHOU Zhihua,et al. The Preparation Method of Molybdenum Bismuth Vanadate Yellow Pigments:CN.201310653422[P].2013-12-05(in Chinese). 唐安平,徐国荣,周智华,等. 一种钼钒酸铋黄颜料的制备方法:中国,201310653422[P].2013-12-05.
[7] Fritz H,Leonardus J H. Process for Stabilizing Bismuth Vanadate Pigments Against Attact by Hydrochloric Acid:US,5123965[P].1992 -06-23.
[8] Hans-Joachim S,Rudolf H. Process for Producing Coated Bismuth Vanadate Yellow Pigments:US,5851587[P].1998-12-22.
[9] Henning W,Werner O,Helmut K,et al. Thermostable Bismuth Vanadate/molybdate Pigments:US 4851049[P].1989-07-25.
[10] Strobel R,Metz H J,Pratsinis S E. Brilliant Yellow, Transparent Pure,SiO2-coated BiVO4 Nanoparticles Made in Flames[J]. Chem Mater,2008,20:6346-6351.
[11] ZHANG Ping,HANG Xingchen,CI Lijie,et al. Preparation of Bismuth Vanadate Yellow Pigmeng with High-Temperature Resistance[J]. Fine Chem,2007,24(7):706-709(in Chinese). 张萍,张星辰,次立杰,等. 耐高温钒酸铋黄色颜料的制备[J]. 精细化工,2007,24(7):706-709.
[12] Liu S G,Li Y M,Wang Z M,et al. Enhanced High Temperature Oxidization Resistance of Silica Coated γ-Ce2S3 Red Pigments[J]. Appl Surf Sci,2016,387:1147-1153.
[13] WANG Tengyao.The Preparation of Bi2MoO6 Photocatalyst in Different Dimensions and Its Application for Photoreduction of CO2[D]. Nanchang:Nanchang Hangkong University,2018(in Chinese). 王腾瑶. 不同维度钼酸铋的制备及其光催化还原CO2性能研究[D]. 南昌:南昌航空大学,2018.
[14] Qi X M,Zhu X Y,Wu J,et al. Controlled Synthesis of BiVO4 with Multiple Morphologies via an Ethylenediamine-Assisted Hydrothermal Method[J]. Mater Res Bull,2014,59:435-441.
[15] Ke S J,Pan Z D,Wang Y M,et al. Synthesis of a Pigment of Monodispersive Spherical Silica Particles Coated with Neodymium Disilicate[J]. Ceram Int,2016,42:11500-11503.
[16] LIU Bing,WANG Deping,HUANG Wenhai,et al. Preparation of Core-Shell SiO2/Fe3O4 Nanocomposite Particles via Sol-Gel Approach[J]. J Inorg Mater,2008,23:33-38(in Chinese). 刘冰,王德平,黄文旵,等. 溶胶-凝胶法制备核壳SiO2/Fe3O4复合纳米粒子的研究[J]. 无机材料学报,2008,23:33-38.
[1] 陈少东, 王晓娟, 李端秀, 王兆喜, 张海禄. 依托度酸哌嗪盐的制备及其性能表征[J]. 应用化学, 2020, 37(1): 103-108.
[2] 乔宗文, 陈涛. 燃料电池用侧链型磺化聚砜质子交换膜的性能[J]. 应用化学, 2019, 36(8): 917-923.
[3] 王竹梅, 马振国, 李月明, 高轶群, 宋福生, 沈宗洋, 李志科. Ca2+离子掺杂对γ-Ce2S3合成温度及热稳定性的影响[J]. 应用化学, 2019, 36(6): 683-689.
[4] 陈广美,汪志坤,吴立霞,黄毅萍. 丙烯酸酯改性水性聚氨酯/纳米二氧化硅复合材料的制备和性能[J]. 应用化学, 2019, 36(5): 532-538.
[5] 李新杰,徐鹤,于美,张超,郭安儒,刘畅. 氮掺杂石墨炭包覆的钴纳米催化剂作高效、高稳定性电催化制氢[J]. 应用化学, 2019, 36(5): 571-577.
[6] 李新杰, 徐鹤, 于美, 张超, 郭安儒, 刘畅. 氮掺杂石墨炭包覆的钴纳米催化剂作高效、高稳定性电催化制氢[J]. 应用化学, 2019, 36(5): 0-0.
[7] 郝文文, 赵丹, 李延春, 楚文玲, 吕成伟, 石雷. 高分散纳米银催化剂一锅高效催化生物质基甘油和苯胺合成3-甲基吲哚[J]. 应用化学, 2019, 36(4): 465-473.
[8] 郭一江, 陈庆德, 沈兴海. 新型离子液体1-烷基-3-甲基咪唑苯甲酰基三氟硼酸盐的合成与性质[J]. 应用化学, 2019, 36(10): 1186-1193.
[9] 陈秀红, 胡六永, 乔文强, 王植源. 基于吡咯并吡咯二酮和苯并噻二唑聚合物的合成及其近红外电致变色性能[J]. 应用化学, 2018, 35(2): 165-173.
[10] 张和,张梦诗,廖世军. 富锂三元层状正极材料的研究进展[J]. 应用化学, 2018, 35(11): 1277-1288.
[11] 陈明锋, 刘玉惠, 范先谋, 杨松伟, 林金火, 刘灿培, 黄海滨. 不饱和聚酯片状模塑料的模压成型与性能[J]. 应用化学, 2018, 35(10): 1222-1226.
[12] 黄登发,刘严华,王峰. 部分析因法分析油包水型聚乙烯亚胺水溶液/石蜡乳液的稳定性[J]. 应用化学, 2018, 35(10): 1234-1242.
[13] 郑秀英, 孔祥建, 龙腊生, 郑兰荪. 稀土簇基金属有机框架的合成、结构及磁学性质[J]. 应用化学, 2017, 34(9): 1086-1092.
[14] 石彦龙, 汪志丹, 方芸, 吕涛, 冯晓娟, 冯雷, 杨武. 超疏水超亲油铜网的制备及其在油水分离中的应用[J]. 应用化学, 2017, 34(4): 472-480.
[15] 赵学森,崔荣朕,李云辉,高莹,崔成哲. 红色铱配合物磷光材料及器件的研究进展[J]. 应用化学, 2016, 33(9): 1002-1008.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
 Chinese Journal of Applied Chemistry
地址:长春市人民大街5625号 邮编:130022
电话:0431-85262016 85262330 传真:0431-85685653 E-mail: yyhx@ciac.ac.cn