[1] | Ma Y,Wang X L,Jia Y S,et al. Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations[J]. Chem Rev,2014,114(19):9987-10043. | [2] | Chen S S,Takata T,Domen K.Particulate Photocatalyst for Overall Water Splitting[J]. Nat Rev Mater,2017,2:17050. | [3] | Fujishima A,Honda K.Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature,1972,238:37-38. | [4] | Linic S,Christopher P,Ingram D B.Plasmonic-Metal Nanostructures for Efficent Conversion of Solar to Chemical Energy[J]. Nat Mater,2011,10:911-921. | [5] | Brongersm M L,Halas N J,Nordlander P.Plasmon-Induced Hot Carrier Science and Technology[J]. Nat Nanotechnol,2015,10:25-34. | [6] | Wang M Y,Ye M D,Iocozzia J,et al. Plasmon-Mediated Solar Energy Conversion via Photocatalysis in Nobel Metal/Semicondcutor Composites[J]. Adv Sci,2016,3(6):1600024. | [7] | Zhang P,Wang T,Gong J L.Mechanistic Understading of the Plasmonic Enhancement for Solar Water Splitting[J]. Adv Mater,2015,27(36):5328-5342. | [8] | Jiang R B,Li B X,Fang C H,et al. Metal/Semicondcutor Hybrid Nanostructures for Plasmon-Enhanced Applications[J]. Adv Mater,2014,26(31):5274-5309. | [9] | Cushing S K,Li J T,Meng F K,et al. Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor[J]. J Am Chem Soc,2012,134(36):15033-15041. | [10] | Ingram D B,Christopher P,Bauer J L,et al. Predictive Model for the Design of Plasmonic Metal/Semicondcutor Composite Photocatalysts[J]. ACS Catal,2011,1(10):1441-1447. | [11] | Govorov A O,Zhang H,Gun'ko Y K. Theory of Photoinjection of Hot Plasmonic Carriers from Metal Nanostructures into Semiconductors and Surface Molecules[J]. J Phys Chem C,2013,117(32):16616-16631. | [12] | SHAN Hangyong,ZU Shuai,FANG Zheyu.Research Progress in Ultrafast Dynamics of Plasmonic Hot Electrons[J]. Laser Optoelectron Prog,2017,54:030002.(in Chinese) 单杭永,祖帅,方哲宇. 表面等离基元热电子超快动力学研究进展[J]. 激光与光电子学进展,2017,54:030002. | [13] | Smith J G,Faucheaux J A,Jain P K.Plsamon Resonances for Solar Energy Harvesting:A Mechanistic Outlook[J]. Nano Today,2015,10(1):67-80. | [14] | Clavero C.Plasmon-Induced Hot-Electron Generation at Nanoparticle/Metal-Oxide Interfaces for Photovoltaic and Photocatalytic Devices[J]. Nat Photon,2014,8:95-103. | [15] | Park J Y,Baker L R,Somorjai G A.Role of Hot Electrons and Metal-Oxide Interfaces in Surface Chmeistry and Catalytic Reaction[J]. Chem Rev,2015,115(8):2781-2817. | [16] | Khurgin J B.How to Deal with the Loss in Plasmonics and Metamateirals[J]. Nat Nanotechnol,2015,10:2-6. | [17] | Bian Z F,Tachikawa T,Zhang P,et al. Au/TiO2 Superstructure-Based Plasmonic Photocatalysts Exhibiting Efficient Charge Separation and Unprecendented Activity[J]. J Am Chem Soc,2014,136(1):458-465. | [18] | Lambright S,Butaeva E,Razgoniaeva N,et al. Enhanced Lifetime of Excitons in Nonepitaxial Au/CdS Core/Shell Nanocrystals[J]. ACS Nano,2014,8(1):352-361. | [19] | Yu S J,Kim Y H,Lee S Y,et al. Hot-Electron-Transfer Enhancement for Efficient Energy Conversion of Visible Light[J]. Angew Chem Int Ed,2014,126(42):11203-11207. | [20] | Liu L Q,Li P,Adisak B,et al. Gold Photosensitiezed SrTiO3 for Visible-Light Water Oxidation Induced by Au Interband Transitions[J]. J Mater Chem A,2014,2(25):9875-9882. | [21] | Wu B H,Liu D Y,Mubeen S,et al. Anisotropic Growth of TiO2 onto Gold Nanorods for Plamon-Enhanced Hydrogen Production from Water Reduction[J]. J Am Chem Soc,2016,138(4):1114-1117. | [22] | Zhao Q,Ji M W,Qian H M,et al. Controlling Structural Symmerty of Hybrid Nanostructure and Its Effect on Efficient Photocatalytic Hydrogen Evolution[J]. Adv Mater,2014,26(9):1387-1392. | [23] | Long R,Mao K K,Gong M,et al. Tunable Oxygen Activation for Catalytic Organic Oxidation:Schottky Junction versus Plasmonic Effects[J]. Angew Chem Int Ed,2014,53(12):3205-3209. | [24] | Tian Y,Tatsuma T.Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles[J]. J Am Chem Soc,2005,127(20):7632-7637. | [25] | Furube A,Du L C,Hara K,et al. Ultrafast Plasmon-Induced Electron Transfer from Gold Nanorods into TiO2 Nanoparticles[J]. J Am Chem Soc,2007,129(48):14852-14853. | [26] | Wu K F,Rodriguez-Cordoba W E,Yang Y,et al. Plasmon-Induced Hot Electron Transfer from the Au Tip to CdS Rod in CdS-Au Nanoheterostructures[J]. Nano Lett,2013,13(11):5255-5263. | [27] | Liu J,Feng J W,Gui J,et al. Metal@Semiconductor Core-Shell Nanocrystals with Atomically Organized Interfaces for Efficient Hot Electron-Mediated Photocatalysis[J]. Nano Energy,2018,48:44-52. | [28] | Xiao J D,Han L L,Luo J,et al. Integration of Plasmonic Effects and Schottky Junction into Metal-Organic Framework Composites:Steering Charge Flow for Enhanced Visible-Light Photocatalysis[J]. Angew Chem Int Ed,2018,57(4):1103-1107. | [29] | Wang S Y,Gao Y Y,Miao S,et al. Positioning the Water Oxidation Reaction Sites in Plasmonic Photocatalysts[J]. J Am Chem Soc,2017,139(34):11771-11778. | [30] | Bai S,Li X Y,Kong Q,et al. Toward Enhanced Photocatalytic Oxygen Evolution:Synergetic Utilization of Plasmonic Effect and Schottky Junction via Interfacing Facet Selection[J]. Adv Mater,2015,27(22):3444-3452. | [31] | Liu G H,Du K,Xu J L,et al. Plasmon-Dominated Photoelectrodes for Solar Water Splitting[J]. J Mater Chem A,2017,5(9):4233-4253. | [32] | Yu J G,Dai G P,Huang B B.Fabrication and Characterization of Visible-Light-Driven Plasmonic Photocatalyst Ag/AgCl/TiO2 Nanotube Array[J]. J Phys Chem C,2009,113(37):16394-16401. | [33] | Zhang X,Liu Y,Lee S T,et al. Coupling Surface Plasmon Resonance of Gold Nanoparticles with Slow-Photon-Effect of TiO2 Photonic Crystals for Synertistically Enhanced Photoelectrochemical Water Splitting[J]. Energy Environ Sci,2014,7(4):1409-1419. | [34] | Zhang C L,Shao M F,Ning F Y,et al. Au Nanoparticles Sensitized ZnO Nanorod@Nanoplatelet Core-Shell Arrays for Enhanced Photoelectrochemical Water Splitting[J]. Nano Energy,2015,12:231-239. | [35] | Huang L,Zheng J J,Huang L L,et al. Controlled Synthesis and Flexible Self-Assembly of Monodisperse Au@Semiconductor Core-Shell Hetero-Nanocrystals into Diverse Superstructures[J]. Chem Mater,2017,29(5):2355-2363. | [36] | Lee J,Mubeen S,Ji X L,et al. Plasmonic Photoanodes for Solar Water Splitting with Visible Light[J]. Nano Lett,2012,12(9):5014-5019. | [37] | Li J T,Cushing S K,Zheng P,et al. Solar Hydrogen Generation by a CdS-Au-TiO2 Sandwich Array Enhanced with Au Nanoparticle as Electron Realy and Plasmonic Photosensitizer[J]. J Am Chem Soc,2014,136(23):8438-8449. | [38] | Wang X T,Liow C H,Qi D P,et al. Programmble Photo-Electrochemical Hydrogen Evolution Based on Multi-Segmented CdS-Au Nanorod Arrays[J]. Adv Mater,2014,26(21):3506-3512. |
|