
Chinese Journal of Applied Chemistry ›› 2024, Vol. 41 ›› Issue (9): 1350-1356.DOI: 10.19894/j.issn.1000-0518.240133
• Full Papers • Previous Articles Next Articles
Received:
2024-04-22
Accepted:
2024-08-15
Published:
2024-09-01
Online:
2024-10-09
Contact:
Yan-Hua WANG
About author:
yhuawang@dlut.edu.cnSupported by:
CLC Number:
Bing-Qin LIU, Yan-Hua WANG. Thermoregulated Phase-Transfer Catalysis System for Hydrogenation of α,β -Unsaturated Ketones at Atmospheric Pressure[J]. Chinese Journal of Applied Chemistry, 2024, 41(9): 1350-1356.
Entry | n(L)/n(Ru) | Temperature/℃ | Time/min | n(chalcone)/n(Ru) | Selectivity/% b | Conversion/% c | TOF d /h-1 |
---|---|---|---|---|---|---|---|
1 | 2 | 90 | 30 | 25 | >99 | 27 | 13 |
2 | 4 | 90 | 30 | 25 | >99 | 40 | 20 |
3 | 6 | 90 | 30 | 25 | >99 | 78 | 39 |
4 | 8 | 90 | 30 | 25 | >99 | >99 | 49 |
5 | 10 | 90 | 30 | 25 | >99 | 86 | 43 |
6 | 8 | 50 | 30 | 25 | >99 | 5 | 2 |
7 | 8 | 60 | 30 | 25 | >99 | 49 | 24 |
8 | 8 | 70 | 30 | 25 | >99 | 70 | 35 |
9 | 8 | 80 | 30 | 25 | >99 | 89 | 44 |
10 | 8 | 90 | 15 | 25 | >99 | 56 | 55 |
11 | 8 | 90 | 20 | 25 | >99 | 84 | 62 |
12 | 8 | 90 | 25 | 25 | >99 | 91 | 54 |
13 | 8 | 90 | 30 | 60 | >99 | 30 | 36 |
14 | 8 | 90 | 30 | 50 | >99 | 48 | 48 |
15 | 8 | 90 | 30 | 35 | >99 | 78 | 54 |
Table 1 Hydrogenation of chalcone catalyzed by the Runano catalyst at atmospheric pressure a
Entry | n(L)/n(Ru) | Temperature/℃ | Time/min | n(chalcone)/n(Ru) | Selectivity/% b | Conversion/% c | TOF d /h-1 |
---|---|---|---|---|---|---|---|
1 | 2 | 90 | 30 | 25 | >99 | 27 | 13 |
2 | 4 | 90 | 30 | 25 | >99 | 40 | 20 |
3 | 6 | 90 | 30 | 25 | >99 | 78 | 39 |
4 | 8 | 90 | 30 | 25 | >99 | >99 | 49 |
5 | 10 | 90 | 30 | 25 | >99 | 86 | 43 |
6 | 8 | 50 | 30 | 25 | >99 | 5 | 2 |
7 | 8 | 60 | 30 | 25 | >99 | 49 | 24 |
8 | 8 | 70 | 30 | 25 | >99 | 70 | 35 |
9 | 8 | 80 | 30 | 25 | >99 | 89 | 44 |
10 | 8 | 90 | 15 | 25 | >99 | 56 | 55 |
11 | 8 | 90 | 20 | 25 | >99 | 84 | 62 |
12 | 8 | 90 | 25 | 25 | >99 | 91 | 54 |
13 | 8 | 90 | 30 | 60 | >99 | 30 | 36 |
14 | 8 | 90 | 30 | 50 | >99 | 48 | 48 |
15 | 8 | 90 | 30 | 35 | >99 | 78 | 54 |
Entry | Time of addition of Hg/min | n(Hg)/n(Ru) | Total time/min | Conversion/% b |
---|---|---|---|---|
1 | — | — | 30 | >99 |
2 | 0 | 1 000 | 30 | 22 |
3 | — | — | 15 | 56 |
4 | 15 | 1 000 | 30 | 58 |
Table 2 Mercury-poisoning tests on the atmospheric hydrogenation of chalcone catalyzed by Runano catalyst a
Entry | Time of addition of Hg/min | n(Hg)/n(Ru) | Total time/min | Conversion/% b |
---|---|---|---|---|
1 | — | — | 30 | >99 |
2 | 0 | 1 000 | 30 | 22 |
3 | — | — | 15 | 56 |
4 | 15 | 1 000 | 30 | 58 |
Entry | Substrate | Product | Time/min | Selectivity/% | Conversion/% b |
---|---|---|---|---|---|
1 | ![]() | ![]() | 30 | >99 | >99 |
2 | ![]() | ![]() | 30 | >99 | >99 |
3 | ![]() | ![]() | 30 | >99 | >99 |
4 | ![]() | ![]() | 60 | >99 | >99 |
Table 3 Atmospheric hydrogenation of other α,β-unsaturated ketones catalyzed by the Runano catalyst a
Entry | Substrate | Product | Time/min | Selectivity/% | Conversion/% b |
---|---|---|---|---|---|
1 | ![]() | ![]() | 30 | >99 | >99 |
2 | ![]() | ![]() | 30 | >99 | >99 |
3 | ![]() | ![]() | 30 | >99 | >99 |
4 | ![]() | ![]() | 60 | >99 | >99 |
1 | ABOO A H, BEGUM R., ZHAO L L, et al. Methanol as hydrogen source: chemoselective transfer hydrogenation of α,β-unsaturated ketones with a rhodacycle[J]. Chin J Catal, 2019, 40(11): 1795-1799. |
2 | HARITHA V, SATYANARAYANA S V, SOMNATH, et al. Chemoenzymatic reduction of double bonds from chalcones using Daucus carota roots[J]. Biocatal Agric Biotech, 2023, 51: 102770. |
3 | NGUYEN T H H, WOO S M, NGUYEN N A, et al. Regioselective hydroxylation of naringin dihydrochalcone to produce neoeriocitrin dihydrochalcone by CYP102A1 (BM3) mutants[J]. Catalysts, 2020, 10(8): 823. |
4 | TOTH I, TUKACS J M, MIKA L T. Kinetic and mechanistic studies of the selective hydrogenation of (E)-chalcones in biomass-derived γ-valerolactone catalyzed by Rh-PPh3 complexes[J]. ChemCatChem, 2023, 15(7): e202201480. |
5 | PULIDO-DIAZ I T, SERRANO-MALDONADO A, LOPEZ-SUAREZ C C, et al. RhNPs supported on N-functionalized mesoporous silica: effect on catalyst stabilization and catalytic activity[J]. Dalton Trans, 2021, 50(9): 3289-3298. |
6 | ROJAS H, DIAZ G, MARTINEZ J J, et al. Hydrogenation of α,β-unsaturated carbonyl compounds over Au and Ir supported on SiO2[J]. J Mol Catal A Chem, 2012, 363-364: 122-128. |
7 | MUSTIKASARI K, RODIANSONO R, ASTUTI M D, et al. The promotion effect of Cu on the Pd/C catalyst in the chemoselective hydrogenation of unsaturated carbonyl compounds[J]. Bull Chem React Eng, 2021, 16(2): 267-279. |
8 | MARTINEZ-PRIETO L M, CANO I, MARQUEZ A, et al. Zwitterionic amidinates as effective ligands for platinum nanoparticle hydrogenation catalysts[J]. Chem Sci, 2017, 8: 2931-2941. |
9 | LI K X, WANG Y H, JIANG J Y, et al. Thermoregulated phase-transfer rhodium nanoparticle catalyst for hydrogenation in an aqueous/organic biphasic system[J]. Catal Commun, 2009, 11(6): 542-546. |
10 | LI W J, WANG Y H, ZENG M, et al. Reversible hydrogen-bond-selective phase transfer directed towards noble metal nanoparticles and its catalytic application[J]. RSC Adv, 2016, 6(8): 6329-6335. |
11 | CHEN P, LI W J, WANG Y H. Atmospheric hydrogenation of α,β-unsaturated ketones catalyzed by highly efficient and recyclable Pd nanocatalyst[J]. Catal Commun, 2019, 125: 10-14. |
12 | LI K X, WANG Y H, JIANG J Y, et al. Hydroformylation of higher olefins by thermoregulated phase-transfer catalysis with rhodium nanoparticles[J]. Chin J Catal, 2010, 31(10): 1191-1194. |
13 | GAO B, WANG Y H. A thermoregulated phase-transfer ruthenium nanocatalyst for the atmospheric hydrogenation of α,β-unsaturated ketones[J]. J Chem Res, 2023, 47(4): 17475198231189838. |
14 | SOLINAS M, JIANG J Y, STELZER O, et al. A cartridge system for organometallic catalysis: sequential catalysis and separation using supercritical carbon dioxide to switch phases[J]. Angew Chem Int Ed, 2005, 44(15): 2291-2295. |
15 | YAN X P, LIU H F, LIEW K Y. Size control of polymer-stabilized ruthenium nanoparticles by polyol reduction[J]. J Mater Chem, 2001, 11(12): 3387-3391. |
16 | SHI J M, LIU X R, BAI X F. Effect of N-doping, exfoliation, defect-inducing of Ni-Fe layered double hydroxide (Ni-Fe LDH) nanosheets on catalytic hydrogen storage of N-ethylcarbazole over Ru/Ni-Fe LDH[J]. Fuel, 2021, 306: 121688. |
17 |
LIU Y C, WANG X C, ZHANG C, et al. Defect engineering and spilt-over hydrogen in Pt/(WO3-TH2) for selective hydrogenation of C![]() |
[1] | Xu-Xu SAI, Xiao-Li HU, Li-Min SUN, Hong-Ji LIU, Zhou CHEN, Wei-Ping FANG, Xiao-Dong YI. Zn-Modified Ni/Al2O3 Catalyst for Enhanced Phenylacetylene Hydrogenation Performance [J]. Chinese Journal of Applied Chemistry, 2024, 41(7): 948-958. |
[2] | Jin LIN, Fang-Zhu WANG, Ling-Ling LYU. Preparation of Pseudo-boehamite from Industrial Materials and Its Application in Selective Hydrogenation of Isophorone [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 79-90. |
[3] | Yan-Ling LI, Sheng-Ting KUANG, Wu-Ping LIAO. Extraction of Thorium(Ⅳ) Using Cextrant 230/Anionic Surfactant Sodium Bis(2-Ethylhexyl) Sulfosuccinate/n-Heptane Microemulsion [J]. Chinese Journal of Applied Chemistry, 2022, 39(12): 1927-1936. |
[4] | SUI Li-Li, HUANG Wei-Wei, WANG Ping, XU Ying-Ming, CHENG Xiao-Li, HUO Li-Hua, JIANG Hui-Ye, ZHAO Bing, ZHANG Wen-Zhi, WANG Zheng-Jun, LIU Ya-Hong. In Situ Deposited Heterogeneous α-Fe2O3/ZnO Nanorod Arrays for Highly Selective Detection of Ethanol [J]. Chinese Journal of Applied Chemistry, 2021, 38(7): 857-865. |
[5] | SUI Li-Li, HUANG Wei-Wei, WANG Ping, XU Ying-Ming, CHENG Xiao-Li, HUO Li-Hua, JIANG Hui-Ye, ZHAO Bing, ZHANG Wen-Zhi, WANG Zheng-Jun, LIU Ya-Hong. In Situ Deposited Heterogeneous α-Fe2O3/ZnO Nanorod Arrays for Highly Selective Detection of Ethanol [J]. Chinese Journal of Applied Chemistry, 2021, 38(7): 0-0. |
[6] | WEI Xue-Ying, WU Wei, NAI Yong-Ning, JIANG Meng-Yuan, TIAN Shi-Wei, MAO Guo-Liang. Research Progress on the Selective Oligomerization of Ethylene Catalyzed by Phosphoramine Chromium and Diphosphinoamine Chromium [J]. Chinese Journal of Applied Chemistry, 2021, 38(2): 136-156. |
[7] | Lihui ZENG,Yuefeng LI,Haoxiang YAN,Yongkang ZENG,Zhixiang ZHANG,Zhongwen LIU,Zhaotie LIU. Catalytic Hydrogenation Performance of p-tert-Butyl-α-Methyl Cinnamaldehydeover Precious Metal Catalysts [J]. Chinese Journal of Applied Chemistry, 2020, 37(3): 322-331. |
[8] | ZHANG Huili, CUI Hongyan, HUANG Wenlong, HU Guoqiang. Synthesis and Antitumor Activity of 3-Arylidene-Quinolin-4-Ones Derivatives of Levofloxacin [J]. Chinese Journal of Applied Chemistry, 2020, 37(12): 1426-1431. |
[9] | ZHAO Lijun, CHENG Haiyang, WANG Chengxue, ZHAO Fengyu. Green and Clean Technology for Preparation of p-Aminophenol by Catalytic Hydrogenation of Nitrobenzene [J]. Chinese Journal of Applied Chemistry, 2015, 32(9): 977-986. |
[10] | GU Mu, HE Daiping, JIANG Ping, YIN Xingchun, CHEN Hu. Selective Hydrogenation of p-Chloronitrobenzene Catalyzed by Activated Carbon Supported Fe-Pt Bimetallic Catalyst [J]. Chinese Journal of Applied Chemistry, 2015, 32(10): 1164-1169. |
[11] | SUN Haijie1,2, CHEN Lingxia2, LI Shuaihui1, ZHANG Yuanxin1, LIU Shouchang1, LIU Zhongyi1*, REN Baozeng3. Effect of Y2O3-Doped ZrO2 on the Catalytic Performance of Ru-La-B/ZrO2 for Selective Hydrogenation of Benzene to Cyclohexene [J]. Chinese Journal of Applied Chemistry, 2014, 31(11): 1317-1322. |
[12] | Liu Dehai, Cai Chaozhong. Catalytic Ring-Opening Polymerization of Cycloalkenes by Mo(CO)6 System [J]. Chinese Journal of Applied Chemistry, 1995, 0(5): 107-108. |
[13] | Liu Zhaojie, He Hongwu, Li Zhirong, Wan Shuqing. Studies on Biologically Active Organophosphorus Compounds Ⅸ. Synthesis and Biological Activities of Glycinamide Containing Phosphorus Derivatives [J]. Chinese Journal of Applied Chemistry, 1995, 0(2): 63-66. |
[14] | Lou Xiangdong, Yang Xiuqing, Li Jinghua, Shen Hesheng, Shen Yusheng. Preparation and Property of α-Fe2O3/SnO2Gas-sensing Film [J]. Chinese Journal of Applied Chemistry, 1995, 0(1): 77-79. |
[15] | Zhang Guoan, Shi Zhengliang, Xue Yangru. Synthesis of 4-tert-butyl-β-chloro-α-methylcinnamaldehyde [J]. Chinese Journal of Applied Chemistry, 1994, 0(5): 112-113. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 40
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 157
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||