Chinese Journal of Applied Chemistry ›› 2023, Vol. 40 ›› Issue (5): 653-665.DOI: 10.19894/j.issn.1000-0518.220311
• Review • Previous Articles Next Articles
Peng-Hui FAN1,2, Jie LIU2(), Sheng-Hui LOU2, Tao TANG2()
Received:
2022-09-22
Accepted:
2023-01-10
Published:
2023-05-01
Online:
2023-05-26
Contact:
Jie LIU,Tao TANG
About author:
liujie@ciac.ac.cnSupported by:
CLC Number:
Peng-Hui FAN, Jie LIU, Sheng-Hui LOU, Tao TANG. Research Progress on Synergists of Phosphorous Flame Retardants in Epoxy Resin[J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 653-665.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.220311
No. | Phosphorus-containing flame retardant/synergist | Amount of phosphorus-containing flame retardant/synergist/% | △PHRR/% | △THR/% | △PSPR/% | △TSP/% | Char residue/% | LOI/% | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | PPAP/EOVS | 9/1 | 81.2 | 24.9 | 62.5 | 56.7 | 31.5 | 32.4 | [ |
2 | CEMP/OMMT | 15/3 | 77.9 | 59.3 | 67.5 | 27.2 | 30.6 | [ | |
3 | APP/TNB | 3.33/1.67 | 67.8 | 25.4 | 20.2 | 28.7 | [ | ||
4 | APP/CuO-GNS | 28/2 | 64.6 | 48.1 | 53.7 | 54.9 | 41 | 41 | [ |
5 | BP-TiO2 | 2 | 59 | 50.4 | 20.4 | 36.5 | [ | ||
6 | MAPP/Cu2O | 18/2 | 59 | 45.5 | 62.5 | 63.5 | 41 | 35 | [ |
7 | W-Zr-MOF-DOPO | 3 | 57.8 | 39.8 | 36.1 | 25.5 | 32.2 | [ | |
8 | HPCTP/GNS@ILs | 7.2/1.8 | 55.5 | 44.3 | 10.6 | +1 | 33.8 | [ | |
9 | HNT@PZF-Cu | 3 | 52.2 | 20.5 | 40.3 | 23.2 | 33.8 | [ | |
10 | PDE/CS | 6/3 | 41.6 | 15.1 | +3.8 | +11.3 | 9.5 | 32.3 | [ |
11 | LPP-MoSe2 | 3 | 39.0 | 24.9 | 15.3 | 29 | [ | ||
12 | APP/HCTFA | 11.1/2.8 | 38.6 | 37.3 | 37.8 | 45.6 | 31.5 | 32 | [ |
13 | AgNC@BP | 5 | 34.2 | 9.6 | 6.0 | 10 | 29.5 | [ | |
14 | [Dmim]Es/GNS | 7.5/1 | 31.1 | 30.0 | 32.2 | [ | |||
15 | HPCTP/H-U | 6/3 | 30.1 | 39.2 | 19.6 | 35.2 | [ | ||
16 | PHDT@FeCo-LDH | 4 | 28.2 | 52.1 | 38.8 | 29.7 | [ |
Table 1 Summary of flame retardancy data of EP composites reaching V-0 in UL-94 test
No. | Phosphorus-containing flame retardant/synergist | Amount of phosphorus-containing flame retardant/synergist/% | △PHRR/% | △THR/% | △PSPR/% | △TSP/% | Char residue/% | LOI/% | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | PPAP/EOVS | 9/1 | 81.2 | 24.9 | 62.5 | 56.7 | 31.5 | 32.4 | [ |
2 | CEMP/OMMT | 15/3 | 77.9 | 59.3 | 67.5 | 27.2 | 30.6 | [ | |
3 | APP/TNB | 3.33/1.67 | 67.8 | 25.4 | 20.2 | 28.7 | [ | ||
4 | APP/CuO-GNS | 28/2 | 64.6 | 48.1 | 53.7 | 54.9 | 41 | 41 | [ |
5 | BP-TiO2 | 2 | 59 | 50.4 | 20.4 | 36.5 | [ | ||
6 | MAPP/Cu2O | 18/2 | 59 | 45.5 | 62.5 | 63.5 | 41 | 35 | [ |
7 | W-Zr-MOF-DOPO | 3 | 57.8 | 39.8 | 36.1 | 25.5 | 32.2 | [ | |
8 | HPCTP/GNS@ILs | 7.2/1.8 | 55.5 | 44.3 | 10.6 | +1 | 33.8 | [ | |
9 | HNT@PZF-Cu | 3 | 52.2 | 20.5 | 40.3 | 23.2 | 33.8 | [ | |
10 | PDE/CS | 6/3 | 41.6 | 15.1 | +3.8 | +11.3 | 9.5 | 32.3 | [ |
11 | LPP-MoSe2 | 3 | 39.0 | 24.9 | 15.3 | 29 | [ | ||
12 | APP/HCTFA | 11.1/2.8 | 38.6 | 37.3 | 37.8 | 45.6 | 31.5 | 32 | [ |
13 | AgNC@BP | 5 | 34.2 | 9.6 | 6.0 | 10 | 29.5 | [ | |
14 | [Dmim]Es/GNS | 7.5/1 | 31.1 | 30.0 | 32.2 | [ | |||
15 | HPCTP/H-U | 6/3 | 30.1 | 39.2 | 19.6 | 35.2 | [ | ||
16 | PHDT@FeCo-LDH | 4 | 28.2 | 52.1 | 38.8 | 29.7 | [ |
1 | YANG S, HUO S, WANG J, et al. A highly fire-safe and smoke-suppressive single-component epoxy resin with switchable curing temperature and rapid curing rate[J]. Compos B Eng, 2021, 207: 108601. |
2 | LIU X F, XIAO Y F, LUO X, et al. Flame-retardant multifunctional epoxy resin with high performances[J]. Chem Eng J, 2022, 427: 132031. |
3 | ZHANG S, JIANG Y, SUN Y, et al. Preparation of flame retardant and conductive epoxy resin composites by incorporating functionalized multi-walled carbon nanotubes and graphite sheets[J]. Polym Adv Technol, 2021, 32(5): 2093-2101. |
4 | GUO H, WALTERS R N, LYON R E, et al. Effect of phosphorus on soot formation and flame retardancy in fires[J]. Fire Safety J, 2021, 120: 103068. |
5 | BISHOP D, SMITH D. Combined pyrolysis and radiochemical gas chromatography for studying the thermal degradation of epoxy resins and polyimides. Ⅰ. the degradation of epoxy resins in nitrogen between 400 ℃ and 700 ℃[J]. J Appl Polym Sci, 1970, 14: 205-233. |
6 | LEVCHIK S, CAMINO G, MARIA P L, et al. Mechanistic study of thermal behavior and combustion performance of epoxy resins: Ⅰ homopolymerized TGDDM[J]. Polym Adv Technol, 1995, 6: 53-62. |
7 | LEVCHIK S, WEIL E. Thermal decomposition, combustion and flame-retardancy of epoxy resins—a review of the recent literature[J]. Polym Int, 2004, 53: 1901-1929. |
8 | ZHOU X, QIU S, MU X, et al. Polyphosphazenes-based flame retardants: a review[J]. Compos B Eng, 2020, 202: 108397. |
9 | HE W, SONG P, YU B, et al. Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants[J]. Prog Mater Sci, 2020, 114: 100687. |
10 | WANG P, CHEN L, XIAO H, et al. Nitrogen/sulfur-containing DOPO based oligomer for highly efficient flame-retardant epoxy resin[J]. Polym Degrad Stab, 2020, 171: 109023. |
11 | FENG J, SUN Y, SONG P, et al. Fire-resistant, strong, and green polymer nanocomposites based on poly(lactic acid) and core-shell nanofibrous flame retardants[J]. ACS Sustainable Chem Eng, 2017, 5: 7894-7904. |
12 | 李娜娜, 姜国伟, 周光远, 等. 有机磷类阻燃剂的合成及应用进展[J]. 应用化学, 2016, 33: 611-623. |
LI N N, JIANG G W, ZHOU G Y, et al. Synthesis and application progress of organic phosphorus-containing flame retardants[J]. Chin J Appl Chem, 2016, 33: 611-623. | |
13 | YANG S, WANG J, HUO S, et al. Synergistic flame-retardant effect of expandable graphite and phosphorus-containing compounds for epoxy resin: strong bonding of different carbon residues[J]. Polym Degrad Stab, 2016, 128: 89-98. |
14 | YANG H, YU B, SONG P, et al. Surface-coating engineering for flame retardant flexible polyurethane foams: a critical review[J]. Compos B Eng, 2019, 176: 107185. |
15 | XUE Y, SHEN M, ZHENG Y, et al. One-pot scalable fabrication of an oligomeric phosphoramide towards high-performance flame retardant polylactic acid with a submicron-grained structure[J]. Compos B Eng, 2020, 183: 107695. |
16 | RAN S, FANG F, GUO Z, et al. Synthesis of decorated graphene with P,N-containing compounds and its flame retardancy and smoke suppression effects on polylactic acid[J]. Compos B Eng, 2019, 170: 41-50. |
17 | HUO S, SONG P, YU B, et al. Phosphorus-containing flame retardant epoxy thermosets: recent advances and future perspectives[J]. Prog Polym Sci, 2021, 114: 111366. |
18 | LIU S, FANG Z, YAN H, et al. Superior flame retardancy of epoxy resin by the combined addition of graphene nanosheets and DOPO[J]. RSC Adv, 2016, 6: 5288. |
19 | WANG A, ZHANG F, XING L, et al. Effect of aluminum diethylphosphinate and its synergist on flame-retardant effects of epoxy resin[J]. J Therm Anal Calorim, 2022, 147: 7277-7287. |
20 | ZHANG K, WU H, WU R, et al. Effect of Ni2+ chelated to the surface of PBFA on the charring flame retardant and smoke suppression properties of epoxy resin[J]. Polym Eng Sci, 2020, 60: 2541-2549. |
21 | YUAN Y, PAN Y T, ZHANG Z, et al. Nickle nanocrystals decorated on graphitic nanotubes with broad channels for fire hazard reduction of epoxy resin[J]. J Hazard Mater, 2021, 402: 123880. |
22 | H.ABD E W, M ABD E F, AYMAN H A, et al. Synthesis and characterization of some arylhydrazone ligand and its metal complexes and their potential application as flame retardant and antimicrobial additives in polyurethane for surface coating[J]. J Organomet Chem, 2015, 791: 99-106. |
23 | CHEN M J, LIN Y C, WANG X N, et al. Influence of cuprous oxide on enhancing the flame retardancy and smoke suppression of epoxy resins containing microencapsulated ammonium polyphosphate[J]. Ind Eng Chem Res, 2015, 54: 12705-12713. |
24 | YE T P, LIAO S F, ZHANG Y, et al. Cu(0) and Cu(II) decorated graphene hybrid on improving fireproof efficiency of intumescent flame-retardant epoxy resins[J]. Compos B Eng, 2019, 175: 107189. |
25 | CHEN X, LIU L, ZHUO J, et al. Influence of iron oxide green on smoke suppression properties and combustion behavior of intumescent flame retardant epoxy composites[J]. J Therm Anal Calorim, 2015, 119: 625-633. |
26 | CHEN X, LIU L, JIAO C. Influence of iron oxide brown on smoke-suppression properties and combustion behavior of intumescent flame-retardant epoxy composites[J]. Adv Polym Technol, 2015, 34: 21516. |
27 | LIU L, CHEN X, JIAO C. Influence of ferrocene on smoke suppression properties and combustion behavior of intumescent flame-retardant epoxy composites[J]. J Therm Anal Calorim, 2015, 122: 437-447. |
28 | CHEN X, LIU L, JIAO C, et al. Influence of ferrite yellow on combustion and smoke suppression properties in intumescent flame-retardant epoxy composites[J]. High Perform Polym, 2014, 27: 412-425. |
29 | ZOU B, QIU S, WANG J, et al. Revealing and modeling of fire products in gas-phase for epoxy/black phosphorus-based nanocomposites[J]. Chemosphere, 2022, 305: 135504. |
30 | FEI X, WANG X, CAI W, et al. Integrated effect of supramolecular self-assembled sandwich-like melamine cyanurate/MoS2 hybrid sheets on reducing fire hazards of polyamide 6 composites[J]. J Hazard Mater, 2016, 320: 252-264. |
31 | WANG S, YU B, ZHOU K, et al. A novel phosphorus-containing MoS2 hybrid: towards improving the fire safety of epoxy resin[J]. J Colloid Interface Sci, 2019, 550: 210-219. |
32 | FENG X, CAI W, WANG X, et al. Hierarchical MoS2/polyaniline binary hybrids with high performance for improving fire safety of epoxy resin[J]. Polym Adv Technol, 2022, 33: 163-172. |
33 | XIAO Y, JIANG G, MA C, et al. Construction of multifunctional linear polyphosphazene and molybdenum diselenide hybrids for efficient fire retardant and toughening epoxy resins[J]. Chem Eng J, 2021, 426: 131839. |
34 | WANG X, KALALI E N, WAN J T, et al. Carbon-family materials for flame retardant polymeric materials[J]. Prog Polym Sci, 2017, 69: 22-46. |
35 | 彭凡畅, 陈小随, 张爱清, 等. 超支化聚磷酰胺包覆碳纳米管的可控制备及阻燃应用[J]. 中国塑料, 2021, 35(9): 55-63. |
PENG F C, CHEN X S, ZHANG A Q, et al. Controllable preparation of hyperbranched polyphosphoramide coated carbon nanotubes and its application for flame retardancy[J]. China Plast, 2021, 35(9): 55-63. | |
36 | 季亚明, 杨雅茹, 姚勇波, 等. 碳纳米球基氮-磷-硫复合阻燃剂的合成及其对环氧树脂的阻燃性能[J]. 材料研究学报, 2021, 35(12): 918-924. |
JI Y M, YANG Y R, YAO Y B, et al. Synthesis of carbon nanosphere-based nitrogen-phosphorus-sulfur compound flame retardant and flame retardancy of CNSs-H-D reinforced epoxy resin[J]. Chin J Mater Res, 2021, 35(12): 918-924. | |
37 | SAI T, RAN S, GUO Z, et al. Recent advances in fire-retardant carbon-based polymeric nanocomposites through fighting free radicals[J]. SusMat, 2022: 1-24. |
38 | 陈九龙, 王双, 杜晓声. 二维纳米材料改性环氧树脂的研究进展[J]. 材料导报, 2021, 35(17): 17210-17217. |
CHEN J L, WANG S, DU X S. Advances in epoxy/two-dimensional nanomaterial composites[J]. Mater Rep, 2021, 35(17): 17210-17217. | |
39 | NETKUEAKUL W, FISCHER B, WALDER C, et al. Effects of combining graphene nanoplatelet and phosphorous flame retardant as additives on mechanical properties and flame retardancy of epoxy nanocomposite[J]. Polymers, 2020, 12: 2049. |
40 | 张凯伦, 陈伊阳, 姚猛, 等. 石墨烯负载离子液体的制备及其与六苯氧基环三磷腈协效阻燃环氧树脂的性能研究[J]. 中国科学:化学, 2021, 51(9): 1283-1292. |
ZHANG K L, CHEN Y Y, YAO M, et al. The preparation of ionic liquid doped graphene composite and its synergistic flame retardant effect with hexaphenoxy cyclotriphosphazene on epoxy resin[J]. Sci Sin Chim, 2021, 51(9): 1283-1292. | |
41 | 徐子策, 尚垒, 敖玉辉. 含磷离子液体/石墨烯环氧复合材料力学及阻燃性能研究[J]. 化工新型材料, 2022, 50(6): 112-116. |
XU Z C, SHANG L, AO Y H. Study on mechanical and flame retardant properties of phosphorus-containing ILs/GO/EP composite[J]. New Chem Mater, 2022, 50(6): 112-116. | |
42 | 吕佳帅男, 狄凯莹, 蔡鹏麟, 等. 阻燃剂THPPA的合成及与埃洛石复配在环氧树脂中的应用[J]. 高分子材料科学与工程, 2021, 37(9): 80-88, 98. |
LV J S N, DI K Y, CAI P L, et al. Synthesis and application of phosphorous-containing flame retardant THPPA compounding with halloysite nanotubes in epoxy resin[J]. Polym Mater Sci Eng, 2021, 37(9): 80-88, 98. | |
43 | WENG Z, SENTHIL T, ZHUO D, et al. Flame retardancy and thermal properties of organoclay and phosphorous compound synergistically modified epoxy resin[J]. J Appl Polym Sci, 2016, 133: 43367. |
44 | YU H, XU X, XIA Y, et al. Synthesis of a novel modified chitosan as an intumescent flame retardant for epoxy resin[J]. e-Polymers, 2020, 20: 303-316. |
45 | NAZ F, ZUBER M, ZIA K, et al. Synthesis and characterization of chitosan-based waterborne polyurethane for textile finishes[J]. Carbohydr Polym, 2018, 200: 54-62. |
46 | LIU X, GU X, SUN J, et al. Preparation and characterization of chitosan derivatives and their application as flame retardants in thermoplastic polyurethane[J]. Carbohydr Polym, 2017, 167: 56-363. |
47 | ZAHRA H, SAWADA D, GUIZANI C, et al. Close packing of cellulose and chitosan in regenerated cellulose fibers improves carbon yield and structural properties of respective carbon fibers[J]. Biomacromolecules, 2020, 21: 4326-4335. |
48 | WANG X, ZHOU C, DAI S, et al. Function of chitosan in a DOPO-based flame retardant modified epoxy resin[J]. J Appl Polym Sci, 2022, 139: 51593. |
49 | LIU Y, XU B, QIAN L, et al. Impact on flame retardancy and degradation behavior of intumescent flame-retardant EP composites by a hyperbranched triazine-based charring agent[J]. Polym Adv Technol, 2020, 31: 3316-3327. |
50 | LIU S Y, HAMERTON I. Recent developments in the chemistry of halogen-free flame retardant polymers[J]. Prog Polym Sci, 2002, 27: 1661-1712. |
51 | DOGAN M, DOGAN S D, SAVAS L, et al. Flame retardant effect of boron compounds in polymeric materials[J]. Compos B Eng, 2021, 222: 109088. |
52 | CHEN S, AI L, ZENG J, et al. Synergistic flame-retardant effect of an aryl boronic acid compound and ammonium polyphosphate on epoxy resins[J]. Chem Select, 2019, 4: 9677-9682. |
53 | ZHANG W, CAMINO G, YANG R. Polymer/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: an overview of fire retardance[J]. Prog Polym Sci, 2017, 67: 77-125. |
54 | 徐伟华, 郑宇, 沈向阳, 等. 不同POSS对磷-硅协同阻燃环氧树脂性能的影响[J]. 中国塑料, 2022, 36: 115-120. |
XU W H, ZHENG Y, SHEN X Y, et al. Effects of different POSS on properties of phosphorus-silicon synergistic flame retardant epoxy resin[J]. China Plast, 2022, 36: 115-120. | |
55 | LI S, LIU Y, LIU Y, et al. Synergistic effect of piperazine pyrophosphate and epoxy-octavinyl silsesquioxane on flame retardancy and mechanical properties of epoxy resin[J]. Compos B Eng, 2021, 223: 109115. |
56 | LIAO Q, HE M, ZHOU Y, et al. Highly cuboid-shaped heterobimetallic metal-organic frameworks derived from porous Co/ZnO/C microrods with improved electromagnetic wave absorption capabilities[J]. ACS Appl Mater Interfaces, 2018, 10: 29136- 29144. |
57 | PAN Y T, ZHANG Z, YANG R. The rise of MOFs and their derivatives for flame retardant polymeric materials: a critical review[J]. Compos B Eng, 2020, 199: 108265. |
58 | JIANG J, HUO S, ZHENG Y, et al. A novel synergistic flame retardant of hexaphenoxycyclotriphosphazene for epoxy resin[J]. Polymers, 2021, 13: 3468. |
59 | WANG X, WU T, HONG J, et al. Organophosphorus modified hollow bimetallic organic frameworks: effective adsorption and catalytic charring of pyrolytic volatiles[J]. Chem Eng J, 2021, 421: 129697. |
60 | XIA L, MIAO Z, DAI J, et al. Facile fabrication of multifunctional flame retardant epoxy resin by a core-shell structural AgNC@boronate polymer[J]. Chem Eng J, 2022, 438: 135402. |
61 | HONG J, WU T, WANG X, et al. Copper-catalyzed pyrolysis of halloysites@polyphosphazene for efficient carbonization and smoke suppression[J]. Compos B Eng, 2022, 230: 109547. |
62 | SUI Y, SIMA H, SHAO W, et al. Novel bioderived cross-linked polyphosphazene microspheres decorated with FeCo-layered double hydroxide as an all-in-one intumescent flame retardant for epoxy resin[J]. Compos B Eng, 2022, 229: 109463. |
[1] | Yuan LIN, Jia-Lian CHEN, Hong-Zhou LI. Flame Retardant Properties of Tannic Acid/Poly(Vinyl Alcohol) [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 69-78. |
[2] | Ying LI, Yun ZHANG, Liang-Liang LIN, Hu-Jun XU. Synergistic Effect of Ternary Compound System of Sodium N‑Lauroyl Methylalanine [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1262-1273. |
[3] | Xiao-Mei HUANG, Xiang DENG, Lang-Man XING, Wei CHEN, Li SUN, Xiao-Yu ZHU. Study of Electrochemical Non-enzyme Glucose Sensor Based on Cu(Ⅱ)Co(Ⅱ) Bimetallic Carbon Nanosheets [J]. Chinese Journal of Applied Chemistry, 2022, 39(12): 1891-1902. |
[4] | Yong-Xin TANG, Li-Wu NIE. Effect of Epoxy Resin Content on the Performance of Luminous Resin Permeable Concrete [J]. Chinese Journal of Applied Chemistry, 2022, 39(11): 1665-1671. |
[5] | Bing-Bing LENG, Chun-Hui ZHU, Cheng-Ying SHI, Zhi-Peng WANG, Yang LIU, Hong-Yan ZHANG, Wen-Ge XU, Bai-Jun LIU. Preparation and Flame Retardancy of the Irradiation‑crosslinked PE‑based Composites Containing a Cyclophosphazene Derivative [J]. Chinese Journal of Applied Chemistry, 2022, 39(11): 1672-1679. |
[6] | BI Yipiao, GONG Xue, YANG Fa, RUAN Mingbo, SONG Ping, XU Weilin. Polyvalent MnOx/C Electrocatalyst for Highly Efficient Nitrogen Reduction Reaction [J]. Chinese Journal of Applied Chemistry, 2020, 37(9): 1048-1055. |
[7] | YOU Geyun, FENG Bin, FAN Fangfang, YANG Changjie, LIANG Cong. Synthesis of Phosphorus-Nitrogen Synergistic Flame-Retardant Compounds with Imide Structure and Their Flame Retardant Effect on Epoxy Resin [J]. Chinese Journal of Applied Chemistry, 2020, 37(2): 144-154. |
[8] | ZHANG Lu, WANG Haichang, LI Hua, WANG Huijun, HUI Linhai, PENG Meiling, ZHU Yutian. Progress of Recycling of Carbon Fiber/Resin Composites via Supercritical Fluid [J]. Chinese Journal of Applied Chemistry, 2020, 37(12): 1357-1363. |
[9] | HOU Chengmin,LI Na,DONG Haitao,KOU Yanping. Preparation and Performance of Hybrid Superhydrophobic Materials from Fluorinated Epoxy Resin and Silica Nanoparticles [J]. Chinese Journal of Applied Chemistry, 2019, 36(7): 798-806. |
[10] | LIU Yide, CHEN Jialian, LI Hongzhou, YANG Songwei, LUO Fubin, CHEN Qinghua. Flame Retardant Properties of Synergistic Flame Retardant Polypropylene [J]. Chinese Journal of Applied Chemistry, 2019, 36(10): 1165-1171. |
[11] | WANG Dongsheng,WEN Xin,LI Yunhui,TANG Tao. Silica Grafted 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and Its Effect on Flame Retardancy and Transparency of Polymethyl Methacrylate Nanocomposites [J]. Chinese Journal of Applied Chemistry, 2018, 35(12): 1427-1433. |
[12] | ZHANG Lili, DING Huimin, ZHANG Jitang, XU Donghua, LI Zhifeng. Thermal Conductivity and Flame Retardancy of Carbon Nanotube Modified Epoxy Resin [J]. Chinese Journal of Applied Chemistry, 2017, 34(1): 46-53. |
[13] | CHEN Mingfeng, LU Qingxin, LIU Canpei, LIN Jinhuo. Preparation and Thermal Property of Epoxy Resin Containing Aromatic Thiazole Groups [J]. Chinese Journal of Applied Chemistry, 2016, 33(3): 293-298. |
[14] | ZHANG Huanhuan, XU Donghua, GUAN Dongbo, YAO Weiguo, SHI Tongfei. The Curing Process of Epoxy Resin Tooling Board for Slush Mold at Different Temperature [J]. Chinese Journal of Applied Chemistry, 2016, 33(3): 299-306. |
[15] | HU Sanming, WEI Wei, YANG Tianbo, ZHENG Changmei, ZHENG Chunbai, DENG Pengyang. Properties of a New Type Heat-Resistant System of Epoxy Resin Cured at Room Temperature [J]. Chinese Journal of Applied Chemistry, 2016, 33(2): 175-180. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||