1 |
CHEN J, JIANG Z, ZHANG Y S, et al. Smart transformable nanoparticles for enhanced tumor theranostics[J]. Appl Phys Rev, 2021, 8: 041321
|
2 |
YANG J, ZOU H, DING J, et al. Controlled synthesis and biomedical applications of cystine-based polypeptide nanomaterials[J]. Acta Polym Sin, 2021, 52: 960-977.
|
3 |
FENG X, XU W, XU X, et al. Cystine proportion regulates fate of polypeptide nanogel as nanocarrier for chemotherapeutics[J]. Sci China Chem, 2021, 64: 293-301.
|
4 |
HE Y, YE T, SU M, et al. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedral[J]. Nature, 2008, 452: 199-201
|
5 |
WALSH A S, YIN H F, ERBEN C M, et al. DNA cage delivery to mammalian cells[J]. ACS Nano, 2011, 5: 5427-5432.
|
6 |
DONG Y, YAO C, ZHU Y, et al. DNA functional materials assembled from branched DNA: design, synthesis and applications[J]. Chem Rev, 2020, 120: 9420.
|
7 |
DEY, S, FAN, C, GOTHELF, K V, et al. DNA origami[J]. Nat Rev Methods Primers, 2021, 1: 13.
|
8 |
GE Z, LIU J, GUO L, et al. Programming cell-cell communications with engineered cell origami clusters[J]. J Am Chem Soc, 2020, 142: 8800-8808.
|
9 |
LEE H, LYTTON-JEAN A K R, CHEN Y, et al. Molecularly self-assembled nucleic acid nanoparticlesfor targeted in vivo siRNA delivery[J]. Nat Nano, 2012, 7: 389-393.
|
10 |
LI J, PEI H, ZHU B, et al. Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides[J]. ACS Nano, 2011, 5: 8783-8789.
|
11 |
LIU X, XU Y, YU T, et al. A DNA nanostructure platform for directed assembly of synthetic vaccines[J]. Nano Lett, 2012, 12: 4254-4259.
|
12 |
TIAN T, LI J, XIE C, et al. Targeted imaging of brain tumors with a framework nucleic acid probe[J]. ACS Appl Mater Interfaces, 2018, 4: 3414-3420.
|
13 |
JIANG D, SUN Y, LI J, et al. Multiple-armed tetrahedral DNA nanostructures for tumor-targeting, dual-modality in vivo imaging[J]. ACS Appl Mater Interfaces, 2016, 8: 4378-4384.
|
14 |
LI J, PEI H, ZHU B, et al. Self-assembled multivalent DNA nanostructures for noninvasiveintracellular delivery of immunostimulatory CpG oligonucleotides[J]. ACS Nano,2011, 5: 8783-8789.
|
15 |
GAO H, ZHANG S, CAO S, et al. Angiopep-2 and activatable cell-penetrating peptide dual-functionalized nanoparticles for systemic glioma-targeting delivery[J]. Mol Pharmaceutics, 2014, 11(8): 2755-2763.
|
16 |
WEI X, ZHAN C, CHEN X, et al. Retro-inverso isomer of Angiopep-2: astable D-peptide ligand inspires brain-targeted drug delivery[J]. Mol Pharm, 2014, 11(10): 3261-3268.
|
17 |
QIN Y, CHEN H, ZHANG Q, et al. Liposome formulated with TAT-modified cholesterol for improving brain delivery and therapeutic efficacy on brain glioma in animals[J]. Int J Pharm, 2011, 420: 304-312.
|
18 |
LEWIN M, CARLESSO N, TUNG C H, et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells[J]. Nat Biotech, 2000, 18(4): 410-414.
|
19 |
TORCHILIN V P, RAMMOHAN R, WEISSIG V, et al. TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors[J]. PNAS, 2001, 98(15): 8786-8791.
|
20 |
LI J, FENG L, FAN L, et al. Targeting the brain with PEG-PLGA nanoparticles modified with phage-displayed peptides[J]. Biomaterials, 2011, 32: 4943-4950.
|
21 |
YONG Q, ZHA Y, FENG B, et al. PEGylated poly(2-(dimethylamino) ethyl methacrylate)/DNA polyplex micelles decorated with phage-displayed TGN peptide for brain-targeted gene delivery[J]. Biomaterials, 2013, 34(8): 2117-2129.
|