[1] Zheng X,Li J,et al. A Review of Research on Hematite as Anode Material for Lithium-Ion Batteries[J]. Ionics,2014,20(12):1651-1663. [2] HE Donghua,TANG Anping,SHEN Jie,et al. Progress in Lithium Vanadyl Phosphate as Electrode Materials for Lithium-Ion Batteries[J]. Chinese J Appl Chem,2014,31(10):1115-1122(in Chinese). 贺冬华,唐安平,申洁,等. 锂离子电池电极材料磷酸氧钒锂的研究进展[J]. 应用化学,2014,31(10):1115-1122. [3] Tian L,Zou H L,Fu J X,et al. Topotactic Conversion Route to Mesoporous Quasi-Single-Crystalline Co3O4 Nanobelts with Optimizable Electrochemical Performance[J]. Adv Funct Mater,2010,20:617-623. [4] Xu X,Ji S,Gu M,et al. In Situ Synthesis of MnS Hollow Microspheres on Reduced Graphene Oxide Sheets as High-Capacity and Long-Life Anodes for Li- and Na-Ion Batteries[J]. ACS Appl Mater Interfaces,2015,7(37):20957. [5] ZUO Zicheng,LI Liangyu. Applications of Graphdiyne in Li+/Na+ Battery Anodes[J]. Chinese J Appl Chem,2018,35(9):1057-1066(in Chinese). 左自成,李玉良. 石墨炔在锂/钠离子电池负极中的应用[J]. 应用化学,2018,35(9):1057-1066. [6] Xiao Y,Lee S H,Sun Y K,et al. The Application of Metal Sulfides in Sodium-Ion Batteries[J]. Adv Energy Mater,2017,7:1601329-1601349. [7] LI Zongfeng,DONG Guixia,KANG Jingrui,et al. Research Progress of Transition Metal Sulfides in Lithium-Ion Batteries[J]. Chinese J Power Sources,2019,43(6):1042-1046(in Chinese). 李宗峰,董桂霞,亢静锐,等. 过渡金属硫化物在锂离子电池中的研究进展[J]. 电源技术,2019,43(6):1042-1046. [8] MA Yanmei. Research Progress of Sulphide Anode Materials for Sodium-Ion Batteries[J]. Energy Storage Sci Technol,2019,8(3):52-58(in Chinese). 马艳梅. 钠离子电池硫化物负极材料的研究进展[J]. 储能科学与技术,2019,8(3):52-58. [9] WEI Keyi,LI Xue. Research Status of Metal Sulfides in Lithium-Ion Batteries[J]. Electron Mass,2020,(3):4-7(in Chinese). 韦克毅,李雪. 金属硫化物在锂离子电池中的研究现状[J]. 电子质量,2020,(3):4-7. [10] Luo B,Fang Y,Wang B,et al. Two Dimensional Graphene-SnS2 Hybrids with Superior Rate Capability for Lithium-Ion Storage[J]. Energy Environ Sci,2012,5(1):5226-5230. [11] Yang S,Zhang Y,Wang S,et al. Rational Construction of MoS2/Mo2N/C Hierarchical Porous Tubular Nanostructures for Enhanced Lithium Storage[J]. J Mater Chem A,2019,7:23886-23894. [12] Hu X,Li Y,Zeng G,et al. Three-Dimensional Network Architecture with Hybrid Nanocarbon Composites Supporting Few-Layer MoS2 for Lithium and Sodium Storage[J]. ACS Nano,2018,12(2):1592-1602. [13] Lim Y V,Wang Y,Guo L,et al. Cubic-shaped WS2 Nanopetals on Prussian Blue Derived Nitrogen-Doped Carbon Nanoporous Framework for High Performance Sodium-ion Batteries[J]. J Mater Chem A,2017,5:10406-10415. [14] Zhang X,Zhao R F,Wu Q H,et al. Ultrathin WS2 Nanosheets Vertically Embedded in Hollow Mesoporous Carbon Framework-A Triple-Shelled Structure with Enhanced Lithium Storage and Electrocatalytic Properties[J]. J Mater Chem A,2018,6:19004-19012. [15] Yu X Y,Yu L,Lou X W,et al. Metal Sulfide Hollow Nanostructures for Electrochemical Energy Storage[J]. Adv Energy Mater,2016,6(3):1501333. [16] Wang J G,Sun H H,Liu H Y,et al. Edge-Oriented SnS2 Nanosheet Arrays on Carbon Paper as Advanced Binder-Free Anodes for Li-Ion and Na-Ion Batteries[J]. J Mater Chem A,2017,5:23115-23122. [17] Chen M,Zhang Z,Si L,et al. Engineering of Yolk-Double Shell Cube-like SnS@N-S Codoped Carbon as a High-Performance Anode for Li- and Na-Ion Batteries[J]. ACS Appl Mater Interfaces,2019,11(38):35050-35059. [18] Wang L,Li X,Jin Z,et al. Spatially Controlled Synthesis of Superlattice-like SnS/Nitrogen-Doped Graphene Hybrid Nanobelts as High-Rate and Durable Anode Materials for Sodium-Ion Batteries[J]. J Mater Chem A,2019,7:27475-27483. [19] Zhang Q,Bock D C,Takeuchi K J,et al. Probing Titanium Disulfide-Sulfur Composite Materials for Li-S Batteries via In Situ X-Ray Diffraction (XRD)[J]. J Electrochem Soc,2017,4(164):A897-A901. [20] Chaturvedi A,Edison E,Arun N,et al. Two Dimensional TiS2 as a Promising Insertion Anode for Na-Ion Battery[J]. Chem Select,2018,3(2):524-528. [21] Vega-Mayoral V,Tian R,Kelly A,et al. Solvent-Exfoliation Stabilizes TiS2 Nanosheets Against Oxidation, Facilitating Lithium Storage Applications[J]. Nanoscale,2019,11:6206-6216. [22] Tao H W,Zhou M,Wang R X,et al. TiS2 as an Advanced Conversion Electrode for Sodium-Ion Batteries with Ultra-high Capacity and Long-Cycle Life[J]. Adv Sci,2018,11:1801021. [23] Lu J,Lian F,Guan L,et al. Adapting FeS2 Micron Particles as an Electrode Material for Lithium-Ion Batteries via Simultaneous Construction of CNT Internal Networks and External Cages[J]. J Mater Chem A,2019,7:991-997. [24] Xie X,Hu Y,Fang G,et al. Towards a Durable High Performance Anode Material for Lithium Storage:Stabilizing N-Doped Carbon Encapsulated FeS Nanosheets with Amorphous TiO2[J]. J Mater Chem A,2019,7:16541-16552. [25] Xiao F P,Yang X M,Yu Y W,et al. Metal-Organic Framework Derived CoS2 Wrapped with Nitrogen-Doped Carbon for Enhanced Lithium/Sodium Storage Performance[J]. ACS Appl Mater Interfaces,2020,3(6):217-226. [26] Pan Y L,Cheng X D,Gong L L,et al. Double-morphology CoS2 Anchored on N-Doped Multichannel Carbon Nanofibers as High-Performance Anode Materials for Na-Ion Batteries[J]. ACS Appl Mater Interfaces,2018,10(37):31441-31451. [27] Yang Z G,Wu Z G,Liu J,et al. Platelet-Like CuS Pregnated with Twin Crystal for High Performance Sodium-Ion Storage[J]. J Mater Chem A,2020,8:8049-8057. [28] Wang Y,Zhang Y,Li H,et al. Realizing High Reversible Capacity:3D Intertwined CNTs Inherently Conductive Network for CuS as an Anode for Lithium-Ion Batteries[J]. Chem Eng J,2017,1(332):49-56. [29] Kang W P,Wang Y Y,Xu J,et al. Recent Progress in Layered Metal Dichalcogenide Nanostructures as Electrodes for High-Performance Sodium-Ion batteries[J]. J Mater Chem A,2017,5:7667-7690. [30] Hao J,Zhang J,Xia G L,et al. Heterostructure Manipulation via in Situ Localized Phase Transformation for High-Rate and Highly Durable Lithium Ion Storage[J]. ACS Nano,2018,12(10):10430-10438. [31] Han L,Wu S,Hu Z,et al. Hierarchically Porous MoS2-Carbon Hollow Rhomboids for Superior Performance of the Anode of Sodium-Ion Batteries[J]. ACS Appl Mater Interfaces,2020,12(9):10402-10409. [32] Zeng X,Ding Z,Ma C,et al. Hierarchical Nanocomposite of Hollow N-Doped Carbon Spheres Decorated with Ultrathin WS2 Nanosheets for High-Performance Lithium-Ion Battery Anode[J]. ACS Appl Mater Interfaces,2016,8(29):18841-18848. [33] Li T,Guo R,Luo Y,et al. Improved Lithium and Sodium Ion Storage Properties of WS2 Anode with Three-layer Shell Structure[J]. Electrochim Acta,2020,1(331):135424. [34] Hu Z,Zhu Z,Cheng F,et al. Pyrite FeS2 for High-rate and Long-life Rechargeable Sodium Batteries[J]. Energy Environ Sci,2015,8(4):1309-1316. [35] Man Z,Li P,Zhou D,et al. Two Birds with One Stone:FeS2@C Yolk-Shell Composite for High-Performance Sodium-Ion Energy Storage and Electromagnetic Wave Absorption[J]. Nano Lett,2020,5(20):3769-3777. [36] Bi R,Zeng C,Huang H,et al. Metal-Organic Frameworks Derived Hollow NiS2 Spheres Encased in Graphene Layers for Enhanced Sodium-Ion Storage[J]. J Mater Chem A,2018,6:14077-14082. [37] Kim H,Cho G B,Kim K W,et al. Fabrication of Superelastic NiS/TiNi Electrode/Current Collector Materials[J]. Phys Scr,2007,(T129):85. [38] Nam T H,Ahn H J,Kim K W,et al. Hybrid Superelastic Metal-Metal Sulfide Materials for Current Collector and Anode of Battery:US, 20080066832.X[P]. 2005-12-29. [39] Xie H Q,Chen M,Wu L M,et al. Hierarchical Nanostructured NiS/MoS2/C Composite Hollow Spheres for High Performance Sodium-Ion Storage Performance[J]. ACS Appl Mater Interfaces,2019,11:41222-41228. [40] Li B,Wang R,Chen Z,et al. Embedding Heterostructured MnS/Co1-xS Nanoparticles in Porous Carbon/Graphene for Superior Lithium Storage[J]. J Mater Chem A,2019,7:1260-1266. [41] Hou B T,Wang X L,Wang J X,et al. In situ Synthesis of Homogeneous Ce2S3/MoS2 Composites and Their Electrochemical Performance for Lithium Ion Batteries[J]. RSC Adv,2017,7:6309-6314. [42] Zhang Y,Lu F,Pan L,et al. Improved Cycling Stability of NiS2 Cathode Through Designing “Kiwano” Hollow Structure[J]. J Mater Chem A,2018,6:11978-11984. [43] Li Q,Li L,Wu P,et al. Silica Restricting the Sulfur Volatilization of Nickel Sulfide for High-Performance Lithium-Ion Batteries[J]. Adv Energy Mater,2019,20:1901153. [44] Kim H H,K Sadan M,Kim C,et al. Simple and Scalable Synthesis of CuS as an Ultrafast and Long-Cycling Anode for Sodium-Ion Batteries[J]. J Mater Chem A,2019,7:16239-16248. [45] SHI Yongchao,TANG Mingxue. NMR/EPR on Rechargeable Batteries[J]. Acta Phys-Chim Sin,2020,36(4):1905004(in Chinese). 史永超,唐明学. 可充电池的磁共振研究[J]. 物理化学学报,2020,36(4):1905004. [46] Chien P H,Feng X,Tang M,et al. Li Distribution Heterogeneity in Solid Electrolyte Li10GeP2S12 upon Electrochemical Cycling Probed by 7Li MRI[J]. J Phys Chem Lett,2018,9:1990-1998. [47] Tang M,Sarou-Kanian V,Melin P,et al. Following Lithiation Fronts in Paramagnetic Electrodes with in situ Magnetic Resonance Spectroscopic Imaging[J]. Nat Commun,2016,7:13284. [48] Tang M,Dalzini A,Li X,et al. Operando EPR for Simultaneous Monitoring of Anionic and Cationic Redox Processes in Li-Rich Metal Oxide Cathodes[J]. J Phys Chem Lett,2017,8(17):4009-4016. [49] Zheng H,Wang L,Li K,et al. Pressure Induced Polymerization of Acetylide Anions in CaC2 and 107 Fold Enhancement of Electrical Conductivity[J]. Chem Sci,2016,8:298-304. |