[1] | Chen H,Cong T N,Yang W,et al.Progress in Electrical Energy Storage System:A Critical Review[J]. Prog Nat Sci,2009,19(3):291-312. | [2] | Liu B,Tan D,Wang X,et al.Flexible, Planar-Integrated, All-Solid-State Fiber Supercapacitors with an Enhanced Distributed-Capacitance Effect[J]. Small,2013,9(11):1998-2004. | [3] | Arico A S,Bruce P,Scrosati B,et al.Nanostructured Materials for Advanced Energy Conversion and Storage Devices[J]. Nat Mater,2005,4(5):366-377. | [4] | Liu C,Li F,Ma L P,et al.Advanced Materials for Energy Storage[J]. Adv Mater,2010,22(8):E28-E62. | [5] | Li L,Loveday D C, Mudigonda D S K, et al. Effect of Electrolytes on Performance of Electrochemical Capacitors Based on Poly[3-(3,4-difluorophenyl)thiophene][J]. J Electrochem Soc,2002,149(9):A1201-A1207. | [6] | Sharma R K,Rastogi A C,Desu S B. Manganese Oxide Embedded Polypyrrole Nanocomposites for Electrochemical Supercapacitor[J]. Electrochim Acta,2008,53(26):7690-7695. | [7] | Deng W,Lan W,Sun Y,et al.Porous CoO Nanostructures Grown on Three-Dimension Graphene Foams for Supercapacitors Electrodes[J]. Appl Surf Sci,2014,305:433-438. | [8] | Kim Y K,Cha S I,Hong S H. Nanoporous Cobalt Foam and A Co/Co(OH)2 Core-Shell Structure for Electrochemical Applications[J]. J Mater Chem A,2013,1(34):9802-9808. | [9] | Singh A K,Sarkar D,Khan G G,et al.Hydrogenated NiO Nanoblock Architecture for High Performance Pseudocapacitor[J]. ACS Appl Mater Interfaces,2014,6(7):4684-4692. | [10] | Wang D,Kong L B,Liu M C,et al.Amorphous Ni P Materials for High Performance Pseudocapacitors[J]. J Power Sources,2015,274:1107-1113. | [11] | Chen L Y,Hou Y,Kang J L,et al.Toward the Theoretical Capacitance of RuO2 Reinforced by Highly Conductive Nanoporous Gold[J]. Adv Energy Mater,2013,3(7):851-856. | [12] | Li G R,Wang Z L,Zheng F L,et al.ZnO@MoO3 Core/Shell Nanocables:Facile Electrochemical Synthesis and Enhanced Supercapacitor Performances[J]. J Mater Chem,2011,21(12):4217-4221. | [13] | Zhu J,Jiang J,Liu J,et al.Direct Synthesis of Porous NiO Nanowall Arrays on Conductive Substrates for Supercapacitor Application[J]. J Solid State Chem,2011,184(3):578-583. | [14] | Ren B,Fan M,Liu Q,et al.Hollow NiO Nanofibers Modified by Citric Acid and the Performances as Supercapacitor Electrode[J]. Electrochim Acta,2013,92:197-204. | [15] | Cao F,Pan G X,Xia X H,et al.Synthesis of Hierarchical Porous NiO Nanotube Arrays for Supercapacitor Application[J]. J Power Sources,2014,264:161-167. | [16] | Zhu Y G,Wang Y,Shi Y,et al.CoO Nanoflowers Woven by CNT Network for High Energy Density Flexible Micro-Supercapacitor[J]. Nano Energy,2014,3:46-54. | [17] | Deng W,Sun Y,Su Q,et al.Porous CoO Nanobundles Composited with 3D Graphene Foams for Supercapacitors Electrodes[J]. Mater Lett,2014,137:124-127. | [18] | Du H,Jiao L,Cao K,et al.Polyol-Mediated Synthesis of Mesoporous α-Ni(OH)2 with Enhanced Supercapacitance[J]. ACS Appl Mater Interfaces,2013,5(14):6643-6648. | [19] | Lu Z,Chang Z,Zhu W,et al.Beta-Phased Ni(OH)2 Nanowall Film with Reversible Capacitance Higher than Theoretical Faradic Capacitance[J]. Chem Commun,2011,47(34):9651-9653. | [20] | Li L,Xu J,Lei J,et al.A One-Step, Cost-Effective Green Method to in Situ Fabricate Ni(OH)2 Hexagonal Platelets on Ni Foam as Binder-Free Supercapacitor Electrode Materials[J]. J Mater Chem A,2015,3(5):1953-1960. | [21] | Patil U M,Nam M S,Sohn J S,et al.Controlled Electrochemical Growth of Co(OH)2 Flakes on 3D Multilayered Graphene Foam for High Performance Supercapacitors[J]. J Mater Chem A,2014,2(44):19075-19083. | [22] | Mondal C,Ganguly M,Manna P K,et al.Fabrication of Porous β-Co(OH)2 Architecture at Room Temperature:A High Performance Supercapacitor[J]. Langmuir,2013,29(29):9179-9187. | [23] | Zhang Z,Wang Y,Tan Q,et al.Facile Solvothermal Synthesis of Mesoporous Manganese Ferrite(MnFe2O4) Microspheres as Anode Materials for Lithium-Ion Batteries[J]. J Colloid Interface Sci,2013,398:185-192. | [24] | Liu M C,Kong L B,Lu C,et al.Facile Fabrication of CoMoO4 Nanorods as Electrode Material for Electrochemical Capacitors[J]. Mater Lett,2013,94:197-200. | [25] | Veerasubramani G K,Krishnamoorthy K,Radhakrishnan S,et al.Synthesis, Characterization, and Electrochemical Properties of CoMoO4 Nanostructures[J]. Int J Hydrogen Energ,2014,39(10):5186-5193. | [26] | Xia X,Lei W,Hao Q,et al.One-Step Synthesis of CoMoO4/Graphene Composites with Enhanced Electrochemical Properties for Supercapacitors[J]. Electrochim Acta,2013,99:253-261. | [27] | Xu X,Shen J,Li N,et al.Microwave-Assisted Synthesis of Graphene/CoMoO4 Nanocomposites with Enhanced Supercapacitor Performance[J]. J Alloy Compd,2014,616:58-65. | [28] | Xiong W,Gao Y,Wu X,et al.Composite of Macroporous Carbon with Honeycomb-Like Structure from Mollusc Shell and NiCo2O4 Nanowires for High-Performance Supercapacitor[J]. ACS Appl Mater Interfaces,2014,6(21):19416-19423. | [29] | Du J,Zhou G,Zhang H,et al.Ultrathin Porous NiCo2O4 Nanosheet Arrays on Flexible Carbon Fabric for High-Performance Supercapacitors[J]. ACS Appl Mater Interfaces,2013,5(15):7405-7409. | [30] | Lei Y,Li J,Wang Y,et al.Rapid Microwave-Assisted Green Synthesis of 3D Hierarchical Flower-Shaped NiCo2O4 Microsphere for High-Performance Supercapacitor[J]. ACS Appl Mater Interfaces,2014,6(3):1773-1780. | [31] | Kandalkar S G,Lee H M,Seo S H,et al.Preparation and Characterization of the Electrodeposited Ni-Co Oxide Thin Films for Electrochemical Capacitors[J]. Korean J Chem Eng,2011,28(6):1464-1467. | [32] | Chen W,Xia C,Alshareef H N. One-Step Electrodeposited Nickel Cobalt Sulfide Nanosheet Arrays for High-Performance Asymmetric Supercapacitors[J]. ACS Nano,2014,8(9):9531-9541. | [33] | Nguyen V H,Lamiel C,Shim J J. Hierarchical Mesoporous Graphene@Ni-Co-S Arrays on Nickel Foam for High-Performance Supercapacitors[J]. Electrochim Acta,2015,161:351-357. | [34] | Mei L,Yang T,Xu C,et al.Hierarchical Mushroom-Like CoNi2S4 Arrays as a Novel Electrode Material for Supercapacitors[J]. Nano Energy,2014,3:36-45. | [35] | Du W,Wang Z,Zhu Z,et al.Facile Synthesis and Superior Electrochemical Performances of CoNi2S4/Graphene Nanocomposite Suitable for Supercapacitor Electrodes[J]. J Mater Chem A,2014,2(25):9613-9619. | [36] | Du W,Zhu Z,Wang Y,et al.One-Step Synthesis of CoNi2S4 Nanoparticles for Supercapacitor Electrodes[J]. RSC Adv,2014,4(14):6998-7002. | [37] | Liu B,Liu B,Wang Q,et al.New Energy Storage Option:Toward ZnCo2O4 Nanorods/Nickel Foam Architectures for High-Performance Supercapacitors[J]. ACS Appl Mater Interfaces,2013,5(20):10011-10017. | [38] | Davis M,Gumeci C,Black B,et al.Tailoring Cobalt Doped Zinc Oxide Nanocrystals with High Capacitance Activity:Factors Affecting Structure and Surface Morphology[J]. RSC Adv,2012,2(5):2061-2066. | [39] | Yu Z Y,Chen L F,Yu S H. Growth of NiFe2O4 Nanoparticles on Carbon Cloth for High Performance Flexible Supercapacitors[J]. J Mater Chem A,2014,2(28):10889-10894. | [40] | Liu Y,Zhao Y,Yu Y,et al.Facile Synthesis of Single-Crystal Mesoporous CoNiO2 Nanosheets Assembled Flowers as Anode Materials for Lithium-Ion Batteries[J]. Electrochim Acta,2014,132:404-409. | [41] | Liu Y,Zhao Y,Yu Y,et al.Hierarchical CoNiO2 Structures Assembled From Mesoporous Nanosheets with Tunable Porosity and Their Application as Iithium-Ion Battery Electrodes[J]. New J Chem,2014,38(7):3084-3091. | [42] | Peng Z,Jia D,Tang J,et al.CoNiO2/TiN-TiOxNy Composites for Ultrahigh Electrochemical Energy Storage and Simultaneous Glucose Sensing[J]. J Mater Chem A,2014,2(28):10904-10909. | [43] | Zhang Y,Luo L,Zhang Z,et al.Synthesis of MnCo2O4 Nanofibers by Electrospinning and Calcination:Application for a Highly Sensitive Non-Enzymatic Glucose Sensor[J]. J Mater Chem B,2014,2(5):529-535. | [44] | Guo D,Luo Y,Yu X,et al.High Performance NiMoO4 Nanowires Supported on Carbon Cloth as Advanced Electrodes for Symmetric Supercapacitors[J]. Nano Energy,2014,8:174-182. | [45] | Cai D,Liu B,Wang D,et al.Enhanced Performance of Supercapacitors with Ultrathin Mesoporous NiMoO4 Nanosheets[J]. Electrochim Acta,2014,125:294-301. | [46] | Moosavifard S E,Shamsi J,Ayazpour M. 2D High-Ordered Nanoporous NiMoO4 for High-Performance Supercapacitors[J]. Ceram Int,2015,41(1,Part B):1831-1837. | [47] | Deng D H,Pang H,Du J M,et al.Fabrication of Cobalt Ferrite Nanostructures and Comparison of Their Electrochemical Properties[J]. Cryst Res Technol,2012,47(10):1032-1038. | [48] | Kumbhar V S,Jagadale A D,Shinde N M,et al.Chemical Synthesis of Spinel Cobalt Ferrite(CoFe2O4) Nano-Flakes for Supercapacitor Application[J]. Appl Surf Sci,2012,259:39-43. | [49] | Purushothaman K K,Cuba M,Muralidharan G. Supercapacitor Behavior of α-MnMoO4 Nanorods on Different Electrolytes[J]. Mater Res Bull,2012,47(11):3348-3351. | [50] | Veerasubramani G K,Krishnamoorthy K,Sivaprakasam R,et al.Sonochemical Synthesis, Characterization, and Electrochemical Properties of MnMoO4 Nanorods for Supercapacitor Applications[J]. Mater Chem Phys,2014,147(3):836-842. | [51] | Zheng Q,Zhang X,Shen Y. Fabrication of Free-Standing NiCo2O4 Nanoarrays via a Facile Modified Hydrothermal Synthesis Method and Their Applications for Lithium Ion Batteries and High-Rate Alkaline Batteries[J]. Mater Res Bull,2015,63:211-215. | [52] | Liu Z Q,Xu Q Z,Wang J Y,et al.Facile Hydrothermal Synthesis of Urchin-Like NiCo2O4 Spheres as Efficient Electrocatalysts for Oxygen Reduction Reaction[J]. Int J Hydrogen Energy,2013,38(16):6657-6662. | [53] | Zhu Y,Wu Z,Jing M,et al.3D Network-Like Mesoporous NiCo2O4 Nanostructures as Advanced Electrode Material for Supercapacitors[J]. Electrochim Acta,2014,149:144-151. | [54] | Deng F,Yu L,Cheng G,et al.Synthesis of Ultrathin Mesoporous NiCo2O4 Nanosheets on Carbon Fiber Paper as Integrated High-Performance Electrodes for Supercapacitors[J]. J Power Sources,2014,251:202-207. | [55] | Liang J,Fan Z,Chen S,et al.Hierarchical NiCo2O4 Nanosheets@Halloysite Nanotubes with Ultrahigh Capacitance and Long Cycle Stability as Electrochemical Pseudocapacitor Materials[J]. Chem Mater,2014,26(15):4354-4360. | [56] | Kong L B,Deng L,Lang J W,et al.Enhanced Electrochemical Capacitive Properties of Nickel-Cobalt Oxide Nano-flakes Materials[J]. Chinese J Chem,2012,30(3):570-576. | [57] | Wu Y Q,Chen X Y,Ji P T,et al.Sol-Gel Approach for Controllable Synthesis and Electrochemical Properties of NiCo2O4 Crystals as Electrode Materials for Application in Supercapacitors[J]. Electrochim Acta,2011,56(22):7517-7522. | [58] | Liu M C,Kong L B,Lu C,et al.A Sol-Gel Process for Fabrication of NiO/NiCo2O4/Co3O4 Composite with Improved Electrochemical Behavior for Electrochemical Capacitors[J]. ACS Appl Mater Interfaces,2012,4(9):4631-4636. | [59] | Zhu F L,Zhao J X,Cheng Y L,et al.Magnetic and Electrochemical Properties of NiCo2O4 Microbelts Fabricated by Electrospinning[J]. Acta Phys-Chim Sin,2012,28(12):2874-2878. | [60] | Carriazo D,Patino J,Gutierrez M C,et al. Microwave-Assisted Synthesis of NiCo2O4 Graphene Oxide Nanocomposites Suitable as Electrodes for Supercapacitors[J]. RSC Adv, 2013,3:13690-13695. | [61] | Mai L Q,Yang F,Zhao Y L,et al.Hierarchical MnMoO4/CoMoO4 Heterostructured Nanowires with Enhanced Supercapacitor Performance[J]. Nat Commun,2011,2:381. | [62] | Vasanthi R,Kalpana D,Renganathan N G. Olivine-Type Nanoparticle for Hybrid Supercapacitors[J]. J Solid State Electrochem,2008,12(7/8):961-969. | [63] | Yan W,Yang Z,Bian W,et al.FeCo2O4/Hollow Graphene Spheres Hybrid with Enhanced Electrocatalytic Activities for Oxygen Reduction and Oxygen Evolution Reaction[J]. Carbon,2015,92:74-83. | [64] | Tang C,Tang Z,Gong H. Hierarchically Porous Ni-Co Oxide for High Reversibility Asymmetric Full-Cell Supercapacitors[J]. J Electrochem Soc,2012,159(5):A651-A656. | [65] | Zhang G Q,Wu H B,Hoster H E,et al.Single-Crystalline NiCo2O4 Nanoneedle Arrays Grown on Conductive Substrates as Binder-Free Electrodes for High-Performance Supercapacitors[J]. Energy Environ Sci,2012,5(11):9453-9456. | [66] | Fang D L,Wu B C,Yan Y,et al.Synthesis and Characterization of Mesoporous Mn-Ni Oxides for Supercapacitors[J]. J Solid State Electrochem,2012,16(1):135-142. | [67] | Yan J,Fan Z,Sun W,et al. Advanced Asymmetric Supercapacitors Based on Ni(OH)2/Graphene and Porous Graphene Electrodes with High Energy Density[J]. Adv Funct Mater,2012,22: 2632-2641. | [68] | Hsu C T,Hu C C. Synthesis and Characterization of Mesoporous Spinel NiCo2O4 Using Surfactant-Assembled Dispersion for Asymmetric Supercapacitors[J]. J Power Sources,2013,242(0):662-671. | [69] | Chen H,Jiang J,Zhang L,et al.In Situ Growth of NiCo2S4 Nanotube Arrays on Ni Foam for Supercapacitors:Maximizing Utilization Efficiency at High Mass Loading to Achieve Ultrahigh Areal Pseudocapacitance[J]. J Power Sources,2014,254:249-257. | [70] | Du W,Zhu Z,Xu Y,et al.High-Performance Asymmetric Full-Cell Supercapacitors Based on CoNi2S4 Nanoparticles and Activated Carbon[J]. J Solid State Electron,2015,19(7):1-12. | [71] | Gao Z,Yang W,Wang J,et al.Flexible All-Solid-State Hierarchical NiCo2O4/Porous Graphene Paper Asymmetric Supercapacitors with an Exceptional Combination of Electrochemical Properties[J]. Nano Energy,2015,13:306-317. | [72] | Wang X,Han X D,Lim M,et al.Nickel Cobalt Oxide-Single Wall Carbon Nanotube Composite Material for Superior Cycling Stability and High-Performance Supercapacitor Application[J]. J Phys Chem C,2012,116(23):12448-12454. | [73] | Bao F,Zhang Z,Guo W,et al.Facile Synthesis of Three Dimensional NiCo2O4@MnO2 Core Shell Nanosheet Arrays and Its Supercapacitive Performance[J]. Electrochim Acta,2015,157:31-40. | [74] | Hu J,Li M,Lyu F,et al.Heterogeneous NiCo2O4@Polypyrrole Core/Sheath Nanowire Arrays on Ni Foam for High Performance Supercapacitors[J]. J Power Sources,2015,294:120-127. | [75] | Li G,Xu C. Hydrothermal Synthesis of 3D NixCo1-xS2 Particles/Graphene Composite Hydrogels for High Performance Supercapacitors[J]. Carbon,2015,90:44-52. | [76] | Xu K,Ren Q,Liu Q,et al.Design and Synthesis of 3D Hierarchical NiCo2S4@MnO2 Core-Shell Nanosheet Arrays for High-Performance Pseudocapacitors[J]. RSC Adv,2015,5(55):44642-44647. | [77] | Wang H L, Holt C M B, Li Z, et al. Graphene-Nickel Cobaltite Nanocomposite Asymmetrical Supercapacitor with Commercial Level Mass Loading[J]. Nano Res,2012,5(9):605-617. | [78] | Wang X,Liu W S,Lu X H,et al.Dodecyl Sulfate-Induced Fast Faradic Process in Nickel Cobalt Oxide-Reduced Graphite Oxide Composite Material and Its Application for Asymmetric Supercapacitor Device[J]. J Mater Chem,2012,22(43):23114-23119. | [79] | Cheng D,Yang Y,Xie J,et al.Hierarchical NiCo2O4@NiMoO4 Core-Shell Hybrid Nanowire/Nanosheet Arrays for High-Performance Pseudocapacitors[J]. J Mater Chem A,2015,3(27):14348-14357. | [80] | Kong W,Lu C,Zhang W,et al.Homogeneous Core-Shell NiCo2S4 Nanostructures Supported on Nickel Foam for Supercapacitors[J]. J Mater Chem A,2015,3(23):12452-12460. |
|