1 |
ZHOU W, YANG W, FAN K, et al. A hypoxia-activated NO donor for the treatment of myocardial hypoxia injury[J]. Chem Sci, 2022, 13(12): 3549-3555.
|
2 |
DU Z, ZHANG X, GUO Z, et al. X-ray-controlled generation of peroxynitrite based on nanosized LiLuF4∶Ce3+ scintillators and their applications for radiosensitization[J]. Adv Mater, 2018, 30(43): 1804046.
|
3 |
SUN Q, XU J, JI C, et al. Ultrafast detection of peroxynitrite in Parkinson′s disease models using a near-infrared fluorescent probe[J]. Anal Chem, 2020, 92(5): 4038-4045.
|
4 |
FENG J, CHEN X, GUAN B, et al. Inhibition of peroxynitrite-induced mitophagy activation attenuates cerebral ischemia-reperfusion injury[J]. Mol Neurobiol, 2018, 55(8): 6369-6386.
|
5 |
WANG Z, WANG W, WANG P, et al. Highly sensitive near-infrared imaging of peroxynitrite fluxes in inflammation progress[J]. Anal Chem, 2021, 93(5): 3035-3041.
|
6 |
ZENG X, LI Z, FU J, et al. A novel ultrasensitive peroxynitrite-specific fluorescent probe and its bioimaging applications in living systems[J]. Dyes Pigm, 2021, 186: 108982.
|
7 |
张成路, 王一鸣, 任芷漩, 等. 以苯并咪唑萘酰亚胺为荧光团高选择性快速检测H2S的荧光探针[J].应用化学,2022, 39(3): 489-497.
|
|
ZHANG C L, WANG Y M, REN Z X, et al. Fluorescent probe for rapid detection of H2S with benzimidazole naphthalimide as the core[J]. Chin J Appl Chem, 2022, 39(3): 489-497.
|
8 |
DOU W T, HAN H H, SEDGWICK A C, et al. Fluorescent probes for the detection of disease-associated biomarkers[J]. Sci Bull, 2022, 67(8): 853-878.
|
9 |
WANG J, ZHANG J, WANG J, et al. Fluorescent peptide probes for organophosphorus pesticides detection[J]. J Hazard Mater, 2020, 389: 122074.
|
10 |
XU W, YANG Q, ZENG J, et al. A biomarker (ONOO-)-activated multicolor fluorescent probe for early detection and assessment of arthritis[J]. Sens Actuators B: Chem, 2022, 359: 131565.
|
11 |
SUN Y, TANG X, LI X, et al. PET-ESIPT-based fluorescent probes for revealing the fluctuation of peroxynitrite (ONOO-) in living cells, zebrafishes and brain tissues[J]. Sens Actuators B: Chem, 2022, 353: 131121.
|
12 |
GU J, LIU Y, SHEN J W, et al. A three-channel fluorescent probe for selective detection of ONOO- and its application to cell imaging[J]. Talanta, 2022, 244: 123401.
|
13 |
XIA Q, FENG S, HONG J, et al. One probe for multiple targets: a NIR fluorescent rhodamine-based probe for ONOO- and lysosomal pH detection in live cells[J]. Sens Actuators B: Chem, 2021, 337: 129732.
|
14 |
WU L, LIU J, TIAN X, et al. Dual-channel fluorescent probe for the simultaneous monitoring of peroxynitrite and adenosine-5′-triphosphate in cellular applications[J]. J Am Chem Soc, 2022, 144 (1): 174-183.
|
15 |
DENG Y, FENG G. Visualization of ONOO- and viscosity in drug-induced hepatotoxicity with different fluorescence signals by a sensitive fluorescent probe[J]. Anal Chem, 2020, 92(21): 14667-14675.
|
16 |
JIANG W L, LI Y, WANG W X, et al. A hepatocyte-targeting near-infrared ratiometric fluorescent probe for monitoring peroxynitrite during drug-induced hepatotoxicity and its remediation[J]. Chem Commun, 2019, 55 (95): 14307-14310.
|
17 |
LIU C, DUAN Q, ZHANG X, et al. A novel hepatoma-specific fluorescent probe for imaging endogenous peroxynitrite in live HepG2 cells[J]. Sens Actuators B: Chem, 2019, 289: 124-130.
|
18 |
YANG Y X, ZHANG L, LI J J, et al. In vivo imaging via a red-emitting fluorescent probe to diagnosing liver cancer or drug-induced liver disease[J]. Anal Chim Acta, 2021, 1168: 338621.
|
19 |
CHEN J, JIANG Z, ZHANG Y S, et al. Smart transformable nanoparticles for enhanced tumor theranostics[J]. Appl Phys Rev, 2021, 8(4): 041321.
|
20 |
杨佳臻, 邹昊洋, 丁建勋, 等. 胱氨酸基聚氨基酸纳米材料的可控合成及其生物医学应用[J]. 高分子学报, 2021, 52(8): 960-977.
|
|
YANG J Z, ZOU H Y, DING J X, et al. Controlled synthesis and biomedical applications of cystine-based polypeptide nanomaterials[J]. Acta Polym Sin, 2021, 52(8): 960-977.
|
21 |
杨佳臻, 丁建勋. 抗肿瘤纳米材料[J]. 应用化学, 2022, 39(5): 855-856.
|
|
YANG J Z, DING J X. Anti-tumor nanomaterials[J]. Chin J Appl Chem, 2022, 39(5): 855-856.
|
22 |
LI Z, LU J, PANG Q, et al. Construction of a near-infrared fluorescent probe for ratiometric imaging of peroxynitrite during tumor progression[J]. Analyst, 2021, 146: 5204-5211.
|
23 |
XIA L, TONG Y, LI L, et al. A selective fluorescent turn-on probe for imaging peroxynitrite in living cells and drug-damaged liver tissues[J]. Talanta, 2019, 204: 431-437.
|
24 |
DENG Y, WANG Y, JIA F, et al. Tailoring supramolecular prodrug nanoassemblies for reactive nitrogen species-potentiated chemotherapy of liver cancer[J]. ACS Nano, 2021, 15(5): 8663-8675.
|
25 |
ZHAO M, LI B, WU Y, et al. A tumor-microenvironment-responsive lanthanide-cyanine FRET sensor for NIR-II luminescence-lifetime in situ imaging of hepatocellular carcinoma[J]. Adv Mater, 2020, 2001172.
|
26 |
XIAO L X, YU E D, YUE H L, et al. Enhanced liver targeting of camptothecin via conjugation with deoxycholic acid[J]. Molecules, 2019, 24 (6): 1179.
|
27 |
ZHANG Z, CAI H X, LIU Z J, et al. Effective enhancement of hypoglycemic effect of insulin by liver-targeted nanoparticles containing cholic acid-modified chitosan derivative[J]. Mol Pharmaceutics, 2016, 13(7): 2433-2442.
|
28 |
GONG T, CHENG R N, WANG X Y, et al. Supramolecular-interaction-mediated aggregation of anticarcinogens on triformyl cholic acid-functionalized Fe3O4 nanoparticles and their dual-targeting treatment for liver cancer[J]. New J Chem, 2021, 45(15): 6880-6888.
|