1 |
SINGH G, LEE J, KARAKOTI A, et al. Emerging trends in porous materials for CO2 capture and conversion[J]. Chem Soc Rev, 2020, 49: 4360-4404.
|
2 |
唐美如, 黄振山, 喻珊, 等. 反硝化菌对烟气汞吸附特性研究[J]. 环境科学学报, 2018, 38(9): 3503-3513.
|
|
TANG M R, HUANG Z S, YU S, et al. Adsorption characteristics of mercury from flue gas by denitrifying bacteria[J]. Acta Sci Circum, 2018, 38(9): 3503-3513.
|
3 |
刘风雷, 陈水挟, 符文皓. 聚丙烯腈树脂基固态胺吸附剂的制备及其对CO2吸附性能研究[J]. 高分子学报, 2018, 7: 886-892.
|
|
LIU F L, CHEN S X, FU W H. Synthesis and CO2 adsorption behavior of amine-functionalized porous polyacrylonitrile resin[J]. Acta Polym Sin, 2018, 7: 886-892.
|
4 |
王秋实, 贺军辉. 磁性硫化铜复合纳米材料的合成及其对水中汞离子的特异性吸附[J]. 应用化学, 2020, 37(11): 1316-1323.
|
|
WANG Q S, HE J H. Synthesis of magnetic CuS composite nanomaterial and its specific adsorption of Hg(Ⅱ) in water[J]. Chinese J Appl Chem, 2020, 37(11): 1316-1323.
|
5 |
YUAN Y, CUI P, TIAN Y Y, et al. Coupling fullerene into porous aromatic frameworks for gas selective sorption[J]. Chem Sci, 2016, 7: 3751-3756.
|
6 |
TAN L, TAN B N. Hypercrosslinked porous polymer materials: design, synthesis, and applications[J]. Chem Soc Rev, 2017, 46: 3322-3356.
|
7 |
李樟楠, 沙浩岩, 杨南, 等. 磷酸基多孔芳香骨架材料用于提取铀离子[J]. 化学学报, 2019, 77: 469-474.
|
|
LI Z N, SHA H Y, YANG N, et al. Phosphoric acid based porous aromatic framework for uranium extraction[J]. Acta Chim Sin, 2019, 77: 469-474.
|
8 |
LI Z N, MENG Q H, YANG Y J, et al. Constructing amidoxime-modified porous adsorbents with open architecture for cost-effective and efficient uranium extraction[J]. Chem Sci, 2020, 11: 4747-4752.
|
9 |
YUAN Y, YANG Y J, MA X J, et al. Molecularly imprinted porous aromatic frameworks and their composite components for selective extraction of uranium ions[J]. Adv Mater, 2018, 30: 1706507.
|
10 |
WANG K, QI D, LI Y, et al. Tetrapyrrole macrocycle based conjugated two-dimensional mesoporous polymers and covalent organic frameworks: from synthesis to material applications[J]. Coordin Chem Rev, 2019, 378: 188-206.
|
11 |
WANG S, SONG K, ZHANG C, et al. A novel metalporphyrin-based microporous organic polymer with high CO2 uptake and efficient chemical conversion of CO2 under ambient conditions[J]. J Mater Chem A, 2017, 5: 1509-1515.
|
12 |
LUO Y, LIU J, LIU Y, et al. Porphyrin-based covalent triazine frameworks: porosity, adsorption performance, and drug delivery[J]. J Polym Sci A: Polym Chem, 2017, 55: 2594-2600.
|
13 |
GUO J, WANG L, HUANG J. Porphyrin-based triazine polymers and their derived porous carbons for efficient CO2 capture[J]. Ind Eng Chem Res, 2020, 59(7): 3205-3212.
|
14 |
WANG Y, XIONG S, LI F, et al. Flexible ketone-bridged organic porous nanospheres: promoting porosity utilizing intramolecular hydrogen-bonding effects for effective gas separation[J]. Chem Eng J, 2019, 358: 1383-1389.
|
15 |
RAVI S, PUTHIARAJ P, AHN W S. Hydroxylamine-anchored covalent aromatic polymer for CO2 adsorption and fixation into cyclic carbonates[J]. ACS Sustainable Chem Eng, 2018, 6: 9324-9332.
|
16 |
SHAO L, WANG S, LIU M, et al. Triazine-based hyper-cross-linked polymers derived porous carbons for CO2 capture[J]. Chem Eng J, 2018, 339: 509-518.
|
17 |
陈敦, 马亚丽, 吐尼沙古丽·阿吾提, 等. 6-(4′-烟酰胺基)苯基-3-(3′-吡啶基)哒嗪并[3,2-c]1,2,4-三唑的制备及其对Hg(Ⅱ)离子吸附性能[J]. 应用化学, 2016, 33(11) :1322-1328.
|
|
CHEN D, MA Y L, TUNSAGNL A, et al. Preparation of 6-(4'-nicotinamido) phenyl-3-(3'-pyridinyl) pyridazino [3,2-c] 1,2,4-triazole and its adsorption performance for mercury(Ⅱ) ions[J]. Chinese J Appl Chem, 2016, 33(11): 1322-1328.
|
18 |
LI B, ZHANG Y, MA D, et al. Mercury nano-trap for effective and efficient removal of mercury(Ⅱ) from aqueous solution[J]. Nat Commun, 2014, 5: 1-7.
|