Chinese Journal of Applied Chemistry ›› 2022, Vol. 39 ›› Issue (7): 1013-1025.DOI: 10.19894/j.issn.1000-0518.210310
• Review • Next Articles
Xue-Xian YANG1,2, Jian ZHANG1,2, Zhi-Gang GU1,2()
Received:
2021-06-23
Accepted:
2021-10-25
Published:
2022-07-01
Online:
2022-07-11
Contact:
Zhi-Gang GU
About author:
zzgu@fjirsm.ac.cnSupported by:
CLC Number:
Xue-Xian YANG, Jian ZHANG, Zhi-Gang GU. Surface‑Coordinated Metal‑Organic Framework Thin Film HKUST‑1 for Optoelectronic Applications[J]. Chinese Journal of Applied Chemistry, 2022, 39(7): 1013-1025.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.210310
Fig.3 Setup illustration for the automatic layer-by-layer dipping growth of SURMOFs[17]P0: Initial and final position of the sample holder; P1-P7: Containers of immersion solutions; 1.Teflon working table; 2. Container lid; 3. Gripper; 4. Sample holder; 5. Sample; 6. Position controller; 7. Ultrasonic bath; 8. Shower; 9. Parking position of container lid; 10. Pump and solution bottle for showering; 11. Computer
Fig.6 Schematic representation of the setup employed for the fabrication of MOF thin films using the LPE approach adapted to the spin-coating method[20]
Fig.7 (A) Schematic diagram of Ln(pdc)3 encapsulated into SURMOF and grown insitu layer by layer using the liquid phase epitaxy method; (B) Schematic diagram of Ln(pdc)3 structure; (C) Photographs of Ln(pdc)3@HKUST-1 film on quartz glass under ultraviolet (365 nm) irradiation; (D) Solid-phase photoluminescence emission spectra of Eu(pdc)3@HKUST-1, Tb(pdc)3@HKUST-1,Gd(pdc)3@HKUST-1 films; (E) CIE chromaticity coordinate chart of red, green, blue and white emitting Ln(pdc)3@HKUST-1 film[27]
Fig.8 (A) Schematic diagram of CDs prepared by the MOF template method; (B) photos of the sample in the synthesis process; (C) photoluminescence of CD@HKUSTI-1-200 film; (D) open hole Z-sean data of CD@HKUST-1-200 film and HKUST-1 grown on quartz glass (point) and CDs aqueous solution made from G@HKUSTI-1 film with theoretical fitting data at 532 nm excitation wavelength[28]
Fig.9 (A) Schematic illustration of the preparation of hollow carbon nanospheres with Cu-TiO2 (Cu-TiO2/C) from core-shell structured SiO2@SURMOF nanospheres; (B) TEM image of SiO2@Cu-TiO2/C; (C) HRTEM image with lattice fringes of TiO2 nanoparticles existing within the sample; (D) TEM image of Cu-TiO2/C nanospheres; (E) TEM elemental mapping of C, O, Cu and Ti in hollow Cu-TiO2/C nanospheres; (F) Photocatalytic H2 production of HKUST-1-800, P25, SiO2@HKUST-1, SiO2@HKUST-1-Ti, SiO2@Cu-TiO2/C, Cu-TiO2/C and hollow Cu-TiO2/C nanospheres; (G) The recyclability of hollow Cu-TiO2/C nanospheres as photocatalysts in H2 production under simulated sunlight irradiation[33]
Fig.10 (A) Bi2O3@HKUST-1 SURMOF; (B) XRD patterns of Bi2O3@HKUST-1; (C) Photocatalytic decomposition data; (D) Carbon thin films with uniform size distribution were prepared by carbonizing SURMOF of supported metal oxygen clusters; (E) Calcinated thin films have high performance of methylene blue degradation; (F) Calcinated thin films have high performance of the reduction of nitrobenzene[34-35]
Fig.11 (A) Sample diagram of field effect transistor (OFET); (B) Sketch diagram of HKUST-1 film modified SiO2 dielectric layer in the OFETs; (C) Structure of semiconductor polymer PTB7-Th; (D) Schematic diagram of liquid phase epitaxy layer by layer preparation of HKUST-1 and the structure; (E) The output characteristics of HKUST-1/SiO2/Si based OFETs; (F) The transmission characteristics of HKUST-1/SiO2/Si based OFETs[38]
1 | YAGHI O M, LI G M, GROY T L. Preparation of single crystals of coordination solids in silica gels: synthesis and structure of CuⅡ(1,4-C4H4N2)(C4O4)(OH2)4[J]. J Solid State Chem, 1995, 117(2): 256-260. |
2 | 刘康, 马鼎璇, 施展. 金属有机骨架材料在轻烃分离中的应用[J]. 应用化学, 2017, 34(9): 1006-1016. |
LIU K, MA D X, SHI Z. Application of metal-organic framework materials in separation of light hydrocarbons[J]. Chinese J Appl Chem, 2017, 34(9): 1006-1016. | |
3 | STEPHEN S Y C, SAMUEL M F L, JONATHAN P H C, et al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n[J]. Science, 1999, 283(5405): 1148-1150. |
4 | 贾静雯, 张梦凡, 张振民, 等. 过渡金属有机框架结构构件及电解水研究进展[J]. 有色金属科学与工程, 2021, 12(1): 49-66. |
JIA J W, ZHANG M F, ZHANG Z M, et al. Research progress of transition metal organic frame structures and water electrolysis[J]. Nonferrous Met Sci Eng, 2021, 12(1): 49-66. | |
5 | 姚美任, 王康军, 张雅静, 等. 大位阻手性吡咯烷(salen)Mn(Ⅲ)配合物在烯烃不对称环氧化反应中的应用[J]. 应用化学, 2020, 37(8): 889-895. |
YAO M R, WANG K J, ZHANG Y J, et al. Application of sterically hindered chiral (pyrrolidine salen) Mn(Ⅲ) complex in asymmetric epoxidation of alkenes[J]. Chinese J Appl Chem, 2020, 37(8): 889-895. | |
6 | 韩修, 康传清. (R)-α-硫辛酸合成方法的研究进展[J]. 应用化学, 2020, 37(11): 1236-1248. |
HAN X, KANG C Q. Advances in synthetic methods of (R)-α-lipoic acid[J]. Chinese J Appl Chem, 2020, 37(11): 1236-1248. | |
7 | 史红玲, 王文杰, 李祥, 等. D-扁桃酸脱氢酶和L-亮氨酸脱氢酶级联催化的L-苯甘氨酸对映选择性生物合成[J]. 应用化学, 2020, 37(2): 168-174. |
SHI H L, WANG W J, LI X, et al. Enantioselective biosynthesis of L-phenylglycine via cascade biocatalysis of D-mandelate dehydrogenase and L-leucine dehydrogenase[J]. Chinese J Appl Chem, 2020, 37(2): 168-174. | |
8 | 孙兰, 文玉华, 严家振, 等. 功能材料及应用[M]. 成都: 四川大学出版社, 2015: 148. |
SUN L, WEN Y H, YAN J Z, et al. Functonal materials and applications[M]. Chengdu: Sichuan University Press, 2015: 148. | |
9 | 余佳芮, 陈帅, 辛星, 等. 二甲基亚砜改性聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸薄膜的研究及应用进展[J]. 应用化学, 2020, 37(12): 1343-1356. |
YU J R, CHEN S, XIN X, et al. Research and application progress on dimethyl sulfoxide modified poly(3,4-ethylenedioxythiophene): poly(styrenesulfonic acid) films[J]. Chinese J Appl Chem, 2020, 37(12): 1343-1356. | |
10 | 衣彦林, 梁秋菊, 李令东, 等. 小分子优先结晶构筑聚合物/非富勒烯共混体系互穿网络结构[J]. 应用化学, 2019, 36(4): 423-430. |
YI Y L, LIANG Q J, LI L D, et al. Constructing interpenetrating network of polymer/non-fullerene blend system by small molecule preferential crystallization[J]. Chinese J Appl Chem, 2019, 36(4): 423-430. | |
11 | 司浩楠, 张铮, 廖庆亮, 等. ZnO纳米结构及其在钙钛矿光伏电池中的应用[J]. 科学通报, 2020, 65(25): 2721-2739. |
SI H N, ZHANG Z, LIAO Q L, et al. Nanostructures and their appilications in perovskite photovoltaic cells[J]. Chinese Sci Bull, 2020, 65(25): 2721-2739. | |
12 | TATSUHIKO N. GaP red light emitting diodes produced by a rotating boat system of liquid phase epitaxial growth[J]. J Electrochem Soc, 2019, 124(8): 1285-1289. |
13 | GU Z G, ZHANG J. Epitaxial growth and applications of oriented metal-organic framework thin films[J]. Coord Chem Rev, 2019, 378: 513-532 |
14 | 黄宇, 刘燕, 张静, 等. 光催化薄膜的亲水性及其应用[J]. 地球环境学报, 2018, 9(5): 415-433. |
HUANG Y, LIU Y, ZHANG J, et al. Hydrophilicity of photocatalytic films and their applications[J]. Chinese J Earth Environ, 2018, 9(5): 415-433. | |
15 | 郭文明, 钟敏. 钙钛矿型太阳能电池制备工艺及稳定性研究进展[J]. 无机化学学报, 2017, 33(7): 1097-1118. |
GUO W M, ZHONG M. Research progress on preparation technology and stability of perovskite solar cells[J]. Chinese J Inorg Chem, 2017, 33(7): 1097-1118. | |
16 | GU Z G, FU H, NEUMANN TOBIAS, et al. Chiral porous metacrystals: employing liquid-phase epitaxy to assemble enantiopure metal-organic nanoclusters into molecular framework pores[J]. ACS Nano, 2016, 10: 977-983. |
17 | GU Z G, PFRIEM A, HAMSCH S, et al. Transparent films of metal-organic frameworks for optical applications[J]. Micropor Mesopor Mater, 2015, 211: 82-87. |
18 | 石乃恩, 宋传远, 张俊, 等. 金属卟啉二维纳米晶的制备及其光电性能[J]. 物理化学学报, 2016, 32(10): 2447-2461. |
SHI N E, SONG C Y, ZHANG J, et al. Preparation and photoelectric properties of metallic porphyrin 2D nanocrystals[J]. Chinese J Phys Chem, 2016, 32(10): 2447-2461. | |
19 | 谷志刚. 液相外延生长法层层组装金属-有机框架薄膜[J]. 功能高分子学报, 2019, 32(5): 533-540. |
GU Z G. Layer assembly of metal-organic frame films by liquid phase epitaxial growth method[J]. Chinese J Funct Poly, 2019, 32(5): 533-540. | |
20 | VALERIYA C, OSAMA S, MOHAMED E. Advanced fabrication method for the preparation of MOF thin films: liquid-phase epitaxy approach meets spin coating method[J]. ACS Appl Mater Interfaces, 2016, 8(31): 20459-20464. |
21 | GONG X J, ZHANG D, DUAN L H, et al. Methane storage and synthesis of HKUST-1 prepared with different solvent[J]. China Pet Process Petrochem Technol, 2019, 21: 44-49. |
22 | 顾少轩, 雷丽文, 祝振奇, 等. 材料的化学合成、制备与表征[M]. 武汉理工大学出版社, 2016: 182. |
GU S X, LEI L W, ZHU Z Q, et al. Chemical synthesis, preparation and characterization of materials[M]. Wuhan Technol University Press, 2016: 182. | |
23 | 周胜, 侯倩倩, 魏嫣莹, 等. 金属有机骨架膜的制备与应用进展[J]. 化工进展, 2019, 38(1): 467-484. |
ZHOU S, HOU Q Q, WEI Y Y, et al. Progress in preparation and application of metal-organic skeleton membrane[J]. Chem Prog, 2019, 38(1): 467-484. | |
24 | 郭建维, 姜文钊, 傅淑琴, 等. 共价有机框架材料制备与应用的研究进展[J]. 广东工业大学学报, 2016, 33(1): 1-11. |
GUO J W, JIANG W Z, FU S Q, et al. Research progress in preparation and application of covalent organic framework materials[J]. J Guangdong Univ Technol, 2016, 33(1): 1-11. | |
25 | GU Z K, HUANG Z D,HU X T, et al. In situ inkjet printing of the perovskite single-crystal array-embedded polydimethylsiloxane film for wearable light-emitting devices[J]. ACS Appl Mater Interfaces, 2020, 12(19): 22157-22162. |
26 | PRASAD G, MAHAJAN, DHANAJI P, et al. N-methyl isatin nanoparticles as a novel probe for selective detection of Cd2+ ion in aqueous medium based on chelation enhanced fluorescence and application to environmental sample[J]. Sens Actuators B: Chem, 2015, 220: 864-872. |
27 | GU Z G, CHEN Z, FU W Q, et al. Liquid‑phase epitaxy effective encapsulation of lanthanide coordination compounds into mof film with homogeneous and tunable white‑light emission[J]. ACS Appl Mater Interfaces, 2015, 7(51): 28585⁃28590. |
28 | GU Z G, LI D J, Z C, et al. MOF‑templated synthesis of ultrasmall photoluminescent carbon‑nanodot arrays for optical applications[J]. Angew Chem, 2017, 129(24): 6957-6962. |
29 | CHEN Z, GU Z G, FU W Q, et al. A confined fabrication of perovskite quantum dots in oriented MOF thin film[J]. ACS Appl Mater Interfaces, 2016, 8(42): 28737-28742. |
30 | GU Z G, FU W Q, LIU M, et al. Surface-mounted MOF templated fabrication of homochiral polymer thin film for enantioselective adsorption of drugs[J]. Chem Commun(Camb), 2017, 53(9): 1470-1473. |
31 | BARONI N, TURSHATOV A, WÖLL C, et al. Inkjet-printed photoluminescent patterns of aggregation-induced-emission chromophores on surface-anchored metal-organic frameworks[J]. ACS Appl Mater Interfaces, 2018, 10(30): 25754-25762. |
32 | STÖBER W, FINK A, BOHN E. Controlled growth of monodisperse silica spheres in the micron size range[J]. J Colloid Interface Sci, 1968, 26(1): 62-69. |
33 | CHEN H, GU Z G, ZHANG S H, et al. Hollow Cu-TiO2/C nanospheres derived from a Ti precursor encapsulated MOF coating for efficient photocatalytic hydrogen evolution[J]. J Mater Chem A, 2018, 6: 7175-7181. |
34 | GUO W, CHEN Z, YANG C W, et al. Bi2O3 nanoparticles encapsulated in surface mounted metal-organic framework thin films[J]. Nanoscale, 2016, 8(12): 6468-6472. |
35 | GU Z G,ZHANG D X,FU W Q,et al. Facile synthesis of metal‑loaded porous carbon thin films via carbonization of surface‑mounted metal‑organic frameworks[J]. Inorg Chem, 2017, 56(6): 3526⁃3531. |
36 | YU X J, GU Y, TERFORT A, et al. Concentration-dependent seeding as a strategy for fabrication of densely packed surface-mounted metal-organic frameworks (SURMOF) layers[J]. Chem Eur J, 2020, 26(23): 5185-5189. |
37 | WANG Z, NMINIBAPIEL D, SHRESTHA P, et al. Resistive switching nanodevices based on metal‑organic frameworks[J]. ChemNanoMat, 2016, 2(1): 67⁃73. |
38 | Gu Z G, CHEN S C, FU W Q, et al. Epitaxial growth of MOF thin film for modifying the dielectric layer in organic field‑effect transistors[J]. ACS Appl Mater Interfaces, 2017, 9(8): 7259⁃7264. |
[1] | WANG Zunzhi1*, ZHANG Jianfu2, CHEN Dongdong2. Layer-by-Layer Assembled Antibacterial Microgel Films on Urethral Catheter [J]. Chinese Journal of Applied Chemistry, 2014, 31(10): 1149-1155. |
[2] | . Synthesis and Theoretical Studies for Non-linear Properties of the Pyrrolotetrathiafulvalene-Based D-π-A Dyads [J]. Chinese Journal of Applied Chemistry, 2009, 26(07): 795-800. |
[3] | Wang Quanfu, Jing Xiabin, Wang Huabin, Wang Dongmei, Han Xiaozu. Synthesis of the Second-Order Nonlinear Optical Polymers Based on Crosslinked Multihydroxyloligomers [J]. Chinese Journal of Applied Chemistry, 1997, 0(6): 54-56. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||