Chinese Journal of Applied Chemistry ›› 2022, Vol. 39 ›› Issue (7): 1026-1038.DOI: 10.19894/j.issn.1000-0518.210313
• Review • Previous Articles Next Articles
Zhi-Qiang QIAO, De-Qiang JI, Peng WANG, Ying-Ming HE, Zhi-Da LI, De-Bin JI, Hong-Jun WU()
Received:
2021-06-25
Accepted:
2021-10-19
Published:
2022-07-01
Online:
2022-07-11
Contact:
Hong-Jun WU
About author:
hjw@nepu.edu.cnSupported by:
CLC Number:
Zhi-Qiang QIAO, De-Qiang JI, Peng WANG, Ying-Ming HE, Zhi-Da LI, De-Bin JI, Hong-Jun WU. Progress in Preparation of Carbon Materials by Electrochemical Reduction of Carbon Dioxide in Molten Salt[J]. Chinese Journal of Applied Chemistry, 2022, 39(7): 1026-1038.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.210313
熔盐 Molten salt | CO2平衡分压(Pa, a(M y O)=0.001 mol/L) Equilibrium partial pressure of CO2(Pa, a(M y O)=0.001 mol/L) |
---|---|
Li2CO3 | 1.039 |
Na2CO3 | 2.462 × 10-8 |
K2CO3 | 2.054 × 10-1 |
CaCO3 | 2.309 × 103 |
BaCO3 | 1.793 × 10-3 |
Table 1 Carbon dioxide absorption capacity of oxides in different molten carbonate at 450 ℃[29]
熔盐 Molten salt | CO2平衡分压(Pa, a(M y O)=0.001 mol/L) Equilibrium partial pressure of CO2(Pa, a(M y O)=0.001 mol/L) |
---|---|
Li2CO3 | 1.039 |
Na2CO3 | 2.462 × 10-8 |
K2CO3 | 2.054 × 10-1 |
CaCO3 | 2.309 × 103 |
BaCO3 | 1.793 × 10-3 |
温度 Temperature/℃ | 金属 Metal | 还原为碱金属的 吉布斯自由能 | 还原为碱金属的电解电势 | 还原为单质碳的 吉布斯自由能 | 还原为单质碳的电解电势 |
---|---|---|---|---|---|
Li | 581.3 | -3.01 | 661.4 | -1.71 | |
540 | Na | 500.3 | -2.59 | 978.1 | -2.53 |
K | 511.0 | -2.65 | 1181.8 | -3.06 | |
Li | 562.5 | -2.91 | 638.4 | -1.65 | |
620 | Na | 480.5 | -2.49 | 952.1 | -2.47 |
K | 489.7 | -2.54 | 1150.1 | -2.98 | |
Li | 543.6 | -2.82 | 615.3 | -1.59 | |
700 | Na | 460.7 | -2.39 | 926.2 | -2.40 |
K | 468.5 | -2.43 | 1118.4 | -2.90 | |
Li | 531.8 | -2.76 | 599.6 | -1.55 | |
750 | Na | 451.8 | -2.34 | 917.1 | -2.38 |
K | 459.3 | -2.38 | 1110.7 | -2.88 |
Table 2 Gibbs free energy and corresponding standard reduction potential of the electrochemical reduction reaction of alkali metal carbonate[59-60]
温度 Temperature/℃ | 金属 Metal | 还原为碱金属的 吉布斯自由能 | 还原为碱金属的电解电势 | 还原为单质碳的 吉布斯自由能 | 还原为单质碳的电解电势 |
---|---|---|---|---|---|
Li | 581.3 | -3.01 | 661.4 | -1.71 | |
540 | Na | 500.3 | -2.59 | 978.1 | -2.53 |
K | 511.0 | -2.65 | 1181.8 | -3.06 | |
Li | 562.5 | -2.91 | 638.4 | -1.65 | |
620 | Na | 480.5 | -2.49 | 952.1 | -2.47 |
K | 489.7 | -2.54 | 1150.1 | -2.98 | |
Li | 543.6 | -2.82 | 615.3 | -1.59 | |
700 | Na | 460.7 | -2.39 | 926.2 | -2.40 |
K | 468.5 | -2.43 | 1118.4 | -2.90 | |
Li | 531.8 | -2.76 | 599.6 | -1.55 | |
750 | Na | 451.8 | -2.34 | 917.1 | -2.38 |
K | 459.3 | -2.38 | 1110.7 | -2.88 |
Fig.3 SEM images of carbon spheres prepared by the salt mixture system (A) Li2-Ca-Na2CO3(mass fraction 66.7%, 20%, 13.3%) and (B) Li2-Ca-K2CO3(mass fraction 66.7%, 20%, 13.3%)[67]
Fig.4 (A) The shape of the cathode before the reaction; (B-E) The shape of product precipitated in the cathode after reaction; (F-H) The scanning electron microscope image of carbon nanofibers prepared by Li2CO3 system at different magnification; (H) The red arrow indicates the nucleation site of Ni, and the blue arrow represents a segment of carbon nanofiber growing from the nucleation site; (I) EOS spectrum of carbon snarofiber shownon blue arrow.[81]
Fig.5 Low(A,C,E) and high(B,D,F) magnification SEM images of carbon sphere prepared by salt mixture system, (A,B)Na2CO3-Li2CO3(mass fraction 8.9%,91.1%),(C,D)Na2CO3-Li2CO3(mass fraction 50%,50%) and (E,F)BaCO3-Li2CO3(mass fraction 20%,80%)[44]
1 | Climate change: atmospheric carbon dioxide[Z/OL]. [2020-8-14]. https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide. |
2 | PETER S C. Reduction of CO2 to chemicals and fuels: a solution to global warming and energy crisis[J]. ACS Energy Lett, 2018, 3(7): 1557-1561. |
3 | DONG F, WANG Y, SU B, et al. The process of peak CO2 emissions in developed economies: a perspective of industrialization and urbanization[J]. Resour Conserv Recy, 2019, 141: 61-75. |
4 | CASERINI S, BARRETO B, LANFREDI C, et al. Affordable CO2 negative emission through hydrogen from biomass, ocean liming, and CO2 storage[J]. Mitig Adapt Strat Gl, 2019, 24(7): 1321-1248. |
5 | MARDANI A, STREIMIKIENE D, CAVALLARO F, et al. Carbon dioxide (CO2) emissions and economic growth: a systematic review of two decades of research from 1995 to 2017[J]. Sci Total Environ, 2019, 649: 31-49. |
6 | 郭红霞, 崔继方, 刘利. 氧空位增强光催化还原CO2性能方面的研究进展[J]. 应用化学, 2020, 37(3): 256-263. |
GUO H X, CUI J F, LIU L. Research progress in photocatalytic reduction of CO2 enhanced by oxygen vacancy[J]. Chinese J Appl Chem, 2020, 37(3): 256-263. | |
7 | DING Q, KHATTAK S I, AHMAD M. Towards sustainable production and consumption: assessing the impact of energy productivity and eco-innovation on consumption-based carbon dioxide emissions (CCO2) in G-7 nations[J]. Sustain Prod Consump, 2021, 27: 254-268. |
8 | 巩金龙. CO2化学转化研究进展概述[J]. 化工学报, 2017, 68(4): 1282-1285. |
GONG J L. A brief overview on recent progress on chemical conversion of CO2[J]. CIESC J, 2017, 68(4): 1282-1285. | |
9 | Climate change: Global temperature[Z/OL]. [2020-3-15]. https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature. |
10 | 毛涛. 碳达峰与碳中和背景下工业低碳发展制度研究[J/OL]. 广西社会科学: 1-9[2021-09-10]. http://kns.cnki.net/-kcms/detail/45.1185.C.20210910.1404.006.html. |
MAO T. Research on industrial low-carbon development system under the background of carbon peak and carbon neutralization[J/OL]. Guangxi Soc Sci: 1-9[2021-09-10]. http://kns.cnki.net/-kcms/detail/45.1185.C. 20210910. 1404.006.html. | |
11 | ALAFNAN S, FALOLA Y, MANSOUR O A, et al. Enhanced recovery from organic-rich shales through carbon dioxide injection: molecular-level investigation[J]. Energ Fuel, 2020. 34(12): 16089-16098. |
12 | HUANG C H, TAN C S. A review: CO2 utilization[J]. Aerosol Air Qual Res, 2014, 14(2): 480-499. |
13 | 陈倩倩, 顾宇, 唐志永, 等. 以二氧化碳规模化利用技术为核心的碳减排方案[J]. 中国科学院院刊, 2019, 34(4): 478-487. |
CHEN Q Q, GU Y, TANG Z Y, et al. Carbon dioxide sizable utilization technology based carbon reduction solutions[J]. Bull Chinese Acad Sci, 2019, 34(4): 478-487. | |
14 | FUKUMOTO M, SUGIUCHI K, NAKAJIMA K. Formation of porous Ni surface by electrodeposition and dissolution in molten salt[J]. Int J Hydrogen Energ, 2020, 45(53): 28252-28259. |
15 | CHEN G Z, FRAY D J, FARTHING T W. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride[J]. Nature, 2000, 407(6802): 361-364. |
16 | LIANG Y, LI Y K, XUE L Y, et al. Extraction of rare earth elements from fluoride molten salt electrolytic slag by mineral phase reconstruction[J]. J Clean Prod, 2018, 177: 567-572. |
17 | JIAO H, SONG W L, CHEN H S, et al. Sustainable recycling of titanium scraps and purity titanium production via molten salt electrolysis[J]. J Clean Prod, 2020, 261: 121314. |
18 | 张明杰. 熔盐电化学原理与应用[M]. 北京: 化学工业出版社, 2006: 1-40. |
ZHANG M J. Principle and application of molten salt electrochemistry[M]. Beijing: Chemical Industry Press, 2006: 1-40. | |
19 | KAPLAN V, WACHTEL E, GARTSMAN K, et al. Conversion of CO2 to CO by electrolysis of molten lithium carbonate[J]. J Electrochem Soc, 2010, 157(4): B552-B556. |
20 | LIU Y, YUAN D D, JI D Q, et al. Syngas production: diverse H2/CO range by regulating carbonates electrolyte composition from CO2/H2O via co-electrolysis in eutectic molten salts[J]. RSC Adv, 2017, 7(83): 52414-52422. |
21 | 刘军, 孟桂祥, 姚胜, 等. 超低浓度气氛中CO2吸附动力学影响因素分析[J]. 化工进展, 2017, 36(8): 3092-3099. |
LIU J, MENG G X, YAO S, et al. Analysis on influence factors of CO2 adsorption kinetics under ultra-low CO2 atmosphere[J]. Chem Ind Eng Prog, 2017, 36(8): 3092-3099. | |
22 | CHUNG W, ROH K, LEE J H. Design and evaluation of CO2 capture plants for the steelmaking industry by means of amine scrubbing and membrane separation[J]. Int J Greenh Gas Con, 2018, 74: 259-270. |
23 | GHASEM N. Advances in carbon capture[M]. RAHIMPOUR M R. Britain: Woodhead Publishing, 2020: 479-501. |
24 | 徐志明, 王颖聪, 郜时旺, 等. 碳酸钾溶液捕集CO2的吸收热研究[J]. 中国电机工程学报, 2015, 35(9): 2254-2260. |
XU Z M, WANG Y C, GAO S W, et al. Heat of CO2 absorption in aqueous potassium carbonate solution[J]. Proc Chin Soc Electrical Eng, 2015, 35(9): 2254-2260. | |
25 | 赵文波, 李广振, 许胜超, 等. 相变吸收酸性气体的发展现状[J]. 化工进展, 2021, 40(1): 401-414. |
ZHAO W B, LI G Z, XU S C, et al. Recent developments of acid gas absorption by phase-change[J]. Chem Ind Eng Prog, 2021, 40(1): 401-414. | |
26 | LIAN Y H, DENG S, LI S J, et al. Numerical analysis on CO2 capture process of temperature swing adsorption (TSA): optimization of reactor geometry[J]. Int J Greenh Gas Con, 2019, 85: 187-198. |
27 | GREEN D A, TURK B S, PORTZER Z W, et al. Capture of carbon dioxide from flue gas using solid regenerable sorbents[J]. Int J Environ Technol, 2004, 4(1): 53-67. |
28 | 赵传文, 陈晓平, 赵长遂. 钾基CO2吸收剂的碳酸化反应特性[J]. 化工学报, 2008, 59(9): 2328-2333. |
ZHAO C W, CHEN X P, ZHAO C S. Carbonation reaction characteristics of dry potassium-based sorbent for CO2 capture[J]. CIESC J, 2008, 59(9): 2328-2333. | |
29 | 邓博文, 尹华意, 汪的华. CO2高效资源化利用的高温熔盐电化学技术研究[J]. 电化学, 2020, 26(5): 628-638. |
DENG B W, YIN H Y, WANG D H. Highly efficient CO2 utilization via molten salt CO2 capture and electrochemical transformation technology[J]. J Electrochem, 2020, 26(5): 628-638. | |
30 | 徐敏杰, 朱明辉, 陈天元, 等. CO2高值化利用: CO2加氢制甲醇催化剂研究进展[J]. 化工进展, 2021, 40(2): 565-576. |
XU M J, ZHU M H, CHEN T Y, et al. High value utilization of CO2: research progress of catalyst for hydrogenation of CO2 to methanol[J]. Chem Ind Eng Prog, 2021, 40(2): 565-576. | |
31 | MATSUURA F, WAKAMATSU T, NATSUI S, et al. CO gas production by molten salt electrolysis from CO2 gas[J]. ISIJ Int, 2015, 55(2): 404-408. |
32 | WU H J, LIU Y, JI D Q, et al. Renewable and high efficient syngas production from carbon dioxide and water through solar energy assisted electrolysis in eutectic molten salts[J]. J Power Sources, 2017, 362: 92-104. |
33 | YIN H Y, MAO X H, TANG D Y, et al. Capture and electrochemical conversion of CO2 to value-added carbon and oxygen by molten salt electrolysis[J]. Energ Environ Sci, 2013, 6(5): 1538-1545. |
34 | REN J W, JOHNSON M, SINGHAL R, et al. Transformation of the greenhouse gas CO2 by molten electrolysis into a wide controlled selection of carbon nanotubes[J]. J CO2 Util, 2017, 18: 335-344. |
35 | DOUGLAS A, CARTER R E, LI M, et al. Toward small-diameter carbon nanotubes synthesized from captured carbon dioxide: critical role of catalyst coarsening[J]. ACS Appl Mater Int, 2018, 10(22): 19010-19018. |
36 | WANG X R, LIU X Y, LICHT G, et al. Calcium metaborate induced thin walled carbon nanotube syntheses from CO2 by molten carbonate electrolysis[J]. Sci Rep-UK, 2020, 10(1): 1-7. |
37 | LICHT S, WANG B H, GHOSH S, et al. A new solar carbon capture process: solar thermal electrochemical photo (STEP) carbon capture[J]. J Phys Chem Lett, 2010, 1(15): 2363-2368. |
38 | LICHT S, WANG B H, WU H J. STEP—a solar chemical process to end anthropogenic global warming. II: experimental results[J]. J Phys Chem C, 2011, 115(23): 11803-11821. |
39 | 吴红军, 董维, 王宝辉, 等. 太阳能光-热-电化学耦合法理论及其化学利用新技术进展[J]. 化工进展, 2014, 33(7): 1718-1724. |
WU H J, DONG W, WANG B H, et al. STEP theory and its new technology in chemical utilization[J]. Chem Ind Eng Prog, 2014, 33(7): 1718-1724. | |
40 | GROULT H, KAPLAN B, KOMABA S, et al. Lithium insertion into carbonaceous anode materials prepared by electrolysis of molten Li-K-Na carbonates[J]. J Electrochem Soc, 2002, 150(2): G67-G75. |
41 | GROULT H, KAPLAN B, LANTELME F, et al. Preparation of carbon nanoparticles from electrolysis of molten carbonates and use as anode materials in lithium-ion batteries[J]. Solid State Ionics, 2006, 177(9/10): 869-875. |
42 | DOUGLAS A, CARTER R, MURALIDHARAN N, et al. Iron catalyzed growth of crystalline multi-walled carbon nanotubes from ambient carbon dioxide mediated by molten carbonates[J]. Carbon, 2017, 116: 572-578. |
43 | DOUGLAS A, CARTER R E, LI M Y, et al. Toward small diameter carbon nanotubes synthesized from captured carbon dioxide: critical role of catalyst coarsening[J]. ACS Appl Mater Inter, 2018, 10(22): 19010-19018. |
44 | WU H J, LI Z D, JI D Q, et al. One-pot synthesis of nanostructured carbon materials from carbon dioxide via electrolysis in molten carbonate salts[J]. Carbon, 2016, 106: 208-217. |
45 | WU H J, LI Z D, JI D Q, et al. Effect of molten carbonate composition on the generation of carbon material[J]. RSC Adv, 2017, 7(14): 8467-8473. |
46 | LI Z D, YUAN D D, WU H J, et al. A novel route to synthesize carbon spheres and carbon nanotubes from carbon dioxide in a molten carbonate electrolyzer[J]. Inorg Chem Front, 2018, 5(1): 208-216. |
47 | LI, Z D, WANG G Z, ZHANG W Y, et al. Carbon nanotubes synthesis from CO2 based on the molten salts electrochemistry: effect of alkaline earth carbonate additives on the diameter of the carbon nanotubes[J]. J Electrochem Soc, 2019, 166(10): D415-D420. |
48 | YU Y Y, LI Z D, ZHANG W Y, et al. Facile synthesis of capacitive carbon materials via electrolyzing carbonates eutectic with varying metallic anodes[J]. J Electrochem Soc, 2018, 165(13): D612-D619. |
49 | LI Z D, ZHANG W Y, JI D Q, et al. Electrochemical conversion of CO2 into valuable carbon nanotubes: the insights into metallic electrodes screening[J]. J Electrochem Soc, 2020, 167: 042501. |
50 | MASSOT L, CHAMELOT P, BOUYER F, et al. Electrodeposition of carbon films from molten alkaline fluoride media[J]. Electrochim Acta, 2003, 47(12): 1949-1957. |
51 | NOVOSELOVA I A, OLIINYK N F, VOLKOV S V, et al. Electrolytic synthesis of carbon nanotubes from carbon dioxide in molten salts and their characterization[J]. Phys E, 2008, 40(7): 2231-2237. |
52 | DENG B W, CHEN Z G, GAO M X, et al. Molten salt CO2 capture and electro-transformation (MSCC-ET) into capacitive carbon at medium temperature: effect of the electrolyte composition[J]. Faraday Discuss, 2016, 190: 241-258. |
53 | 王宝辉, 洪美花, 吴红军, 等. 熔盐电解还原二氧化碳制碳技术[J]. 化工进展, 2013, 32(9): 2120-2125. |
WANG B H, HONG M H, WU H J, et al. Study on carbon generation from carbon dioxide by molten salt electrolysis[J]. Chem Ind Eng Prog, 2013, 32(9): 2120-2125. | |
54 | INGRAM M D, BARON B, JANZ G J. The electrolytic deposition of carbon from fused carbonates[J]. Electrochim Acta, 1966, 11(11): 1629-1639. |
55 | DELIMARSKII Y K, GORODYSKII A V, GRISHCHENKO V F. Cathode liberation of carbon from molten carbonates[J]. Dokl Akad Nauk SSSR, 1964, 156(3): 650-651. |
56 | KAWAMURA H, ITO Y. Electrodeposition of cohesive carbon films on aluminum in a LiCl-KCl-K2CO3 melt[J]. J Appl Electrochem, 2000, 30(5): 571-574. |
57 | NOVOSELOVA I A, OLIINYK N F, VOLKOV S V, et al. Electrolytic synthesis of carbon nanotubes from carbon dioxide in molten salts and their characterization[J]. Phys E, 2008, 40(7): 2231-2237. |
58 | STERN K H, ROLSION D R. Theme and variations on tantalum-carbonate reactions in molten fluorides[J]. J Electrochem Soc, 1989, 136(12): 3760-3767. |
59 | 吕旺燕, 刘世念, 苏伟, 等. 熔盐电沉积碳材料的研究进展[J]. 材料导报, 2012, 26(2): 248-251. |
LV W Y, LIU S N, SU W, et al. Research progresses in the electro-deposition of carbonaceous materials in molten salts[J]. Mater Rep, 2012, 26(2): 248-251. | |
60 | IJIJE H V, LAWRENCE R C, CHEN G Z. Carbon electrodeposition in molten salts: electrode reactions and applications[J]. Rsc Adv, 2014, 4(67): 35808-35817. |
61 | KAPLAN B, GROULT H, BARHOUN A, et al. Synthesis and structural characterization of carbon powder by electrolytic reduction of molten Li2CO3-Na2CO3-K2CO3[J]. J Electrochem Soc, 2002, 149(5): D72-D78. |
62 | IJIJE H V, SUN C G, CHEN G Z. Indirect electrochemical reduction of carbon dioxide to carbon nanopowders in molten alkali carbonates: process variables and product properties[J]. Carbon, 2014, 73: 163-174. |
63 | 尹华意. 基于高温熔盐化学的减碳和固碳技术研究[D]. 武汉: 武汉大学, 2012. |
YIN H Y. Research on carbon reduction and fixation technology based on high temperature molten salt chemistry[D]. Wuhan: Wuhan University, 2012. | |
64 | YIN H Y, MAO X H, TANG D Y, et al. Capture and electrochemical conversion of CO2 to value-added carbon and oxygen by molten salt electrolysis[J]. Energ Environ Sci, 2013, 6(5): 1538-1545. |
65 | YU Y Y, LI Z D, ZHANG W Y, et al. Effect of BaCO3 addition on the CO2-derived carbon deposition in molten carbonates electrolyzer[J]. New J Chem, 2018, 42(2): 1208-1215. |
66 | VAN K L, GROULT H, LANTELME F, et al. Electrochemical formation of carbon nano-powders with various porosities in molten alkali carbonates[J]. Electrochim Acta, 2009, 54(19): 4566-4573. |
67 | 李志达, 李金莲, 吴红军. 熔盐体系组成对二氧化碳电化学合成新型碳材料形貌影响[J]. 化工进展, 2019, 38(9): 4174-4182. |
LI Z D, LI J L, WU H J. Impact of molten salts conformation on the morphology of the electrochemically synthesized carbon materials[J]. Chem Ind Eng Prog, 2019, 38(9): 4174-4182. | |
68 | JIANG M P, LI Z D, YU Y Y, et al. Efficient conversion of greenhouse gas of CO2 into carbon products with desirable structures via molten carbonates electrolysis[J]. J Electrochem Soc, 2017, 164(14): D1022-D1027. |
69 | DENG B W, MAO X H, XIAO W, et al. Microbubble effect-assisted electrolytic synthesis of hollow carbon spheres from CO2[J]. J Mater Chem A, 2017, 5(25): 12822-12827. |
70 | NIWASE K, HOMAE T, NAKAMURA K G, et al. Generation of giant carbon hollow spheres from C60 fullerene by shock-compression[J]. Chem Phys Lett, 2002, 362(1): 47-50. |
71 | BORGOHAIN R, YANG J, SELEGUE J P, et al. Controlled synthesis, efficient purification, and electrochemical characterization of arc-discharge carbon nano-onions[J]. Carbon, 2014, 66: 272-284. |
72 | SU F, ZHAO X S, WANG Y, et al. Hollow carbon spheres with a controllable shell structure[J]. J Mater Chem, 2006, 16(45): 4413-4419. |
73 | HU F P, WANG Z U, LI Y L, et al. Improved performance of Pd electrocatalyst supported on ultrahigh surface area hollow carbon spheres for direct alcohol fuel cells[J]. J Power Sources, 2008, 177(1): 61-66.. |
74 | FU J W, XU Q, CHEN J F, et al. Controlled fabrication of uniform hollow core porous shell carbon spheres by the pyrolysis of core/shell polystyrene/cross-linked polyphosphazene composites[J]. Chem Commun, 2010, 46(35): 6563-6565. |
75 | HSU W K, HARE J P, TERRONES M, et al. Condensed-phase nanotubes[J]. Nature, 1995, 377(6551): 687-687. |
76 | HSU W K, TERRONES M, HARE J P, et al. Electrolytic formation of carbon nanostructures[J]. Chem Phys Lett, 1996, 262(1): 161-166. |
77 | CHEN G Z, FAN X D, LUGET A, et al. Electrolytic conversion of graphite to carbon nanotubes in fused salts[J]. J Electroanal Chem, 1998, 446(1): 1-6. |
78 | CHEN G Z, KINLOCH I, SHAFFER M S P, et al. Electrochemical investigation of the formation of carbon nanotubes in molten salts[J]. High Temp Mater P-US, 1998, 2(4): 459-469. |
79 | SCHWANDT C, DIMITROV A T, FRAY D J. The preparation of nano-structured carbon materials by electrolysis of molten lithium chloride at graphite electrodes[J]. J Electroanal Chem, 2010, 647(2): 150-158. |
80 | DIMITROV A T. Study of molten Li2CO3 electrolysis as a method for production of carbon nanotubes[J]. Maced J Chem Chem En, 2009, 28(1): 111-118. |
81 | REN J W, L F F, LAU J, et al. One-pot synthesis of carbon nanofibers from CO2[J]. Nano Lett, 2015, 15(9): 6142-6148. |
82 | REN J W, LICHT S. Tracking airborne CO2 mitigation and low cost transformation into valuable carbon nanotubes[J]. Sci Rep-UK, 2016, 6(1): 1-11. |
83 | LICHT S, DOUGLAS A, REN J W, et al. Carbon nanotubes produced from ambient carbon dioxide for environmentally sustainable lithium-ion and sodium-ion battery anodes[J]. ACS Comb Sci, 2016, 2(3): 162-168. |
[1] | Feng ZHU, Xiao-Lian PENG, Wen-Bin ZHANG. Research Progress in the Effects of Proton Acceptor/Donor on Electrocatalytic Reactions [J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 666-680. |
[2] | Lian-Bo TANG, Da-You FU, Qi CHEN, Yang-Run FENG, Ya-Lin XIONG, Zhu-Qing WANG. Enhanced Gas⁃Liquid Chemiluminescence by Carbon Dots for Determination of Carbon Dioxide [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1294-1302. |
[3] | Xiao-Mei WANG, Jiang-Fei GUO, Li-Zhi WANG, Jian-Han HUANG. Porphyrin⁃Based Hyper⁃cross⁃Linked Polymer: Preparation and Adsorption of Carbon Dioxide and Hg(Ⅱ) Ion [J]. Chinese Journal of Applied Chemistry, 2022, 39(7): 1083-1089. |
[4] | Lin-Jie SHANG, Jiang LIU, Ya-Qian LAN. Covalent Organic Framework Materials for Photo/ Electrocatalytic Carbon Dioxide Reduction [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 559-584. |
[5] | Xue-Ting WU, Yang YU, Shu-Yan SONG, Hong-Jie ZHANG. Artificial Carbon Sequestration Technology—Research Progress on the Catalysts for Thermal Catalytic Reduction of CO2 [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 599-615. |
[6] | Ao YU, Guo-Ming MA, Long-Tao ZHU, Ping PENG, Fang-Fang LI. Electrochemical Reduction of Carbon Dioxide to Carbon Materials for Two⁃Electron Oxygen Reduction Reaction [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 657-665. |
[7] | Xiang-Zhi YE, Yun-Shui DENG, Yuan LIU, Yong-Liu ZHOU, Jian-Xiong HE, Chun-Rong XIONG. Glass Sphere Supported Amorphous Organotitanium Polymer to Improve the Turnover Frequency in Photocatalytic Reduction of CO2 [J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1554-1563. |
[8] | LU Xin-Yu, MA Bin-Ze, LUO Hao, QI Huan, LI Qiang, WU Guang-Peng. Optimization of Development Process for Carbon Dioxide-Based Poly(cyclohexene carbonate) Electron Beam Resist [J]. Chinese Journal of Applied Chemistry, 2021, 38(9): 0-0. |
[9] | LU Xin-Yu, MA Bin-Ze, LUO Hao, QI Huan, LI Qiang, WU Guang-Peng. Optimization of Development Process for Carbon Dioxide-Based Poly(cyclohexene carbonate) Electron Beam Resist [J]. Chinese Journal of Applied Chemistry, 2021, 38(9): 1189-1198. |
[10] | ZHANG Shou-Cun, PI Mao. Effect of Monomer on Emulsification Behavior of Polyvinyl Alcohol and Preparation of Macroporous Materials [J]. Chinese Journal of Applied Chemistry, 2021, 38(1): 77-83. |
[11] | GAO Jia, SONG Fujiao, CHENG Wenqiang, GE Yan, XU Qi. Catalytic Performance of Pd-Cu/ZrO2 Catalyst for Hydrogenation of Carbon Dioxide to Methanol [J]. Chinese Journal of Applied Chemistry, 2020, 37(2): 160-167. |
[12] | LIU Junhui, SONG Yakun, SONG Chunshan, GUO Xinwen. Recent Advances in Application of Metal-Orgainic Framework-Derived Catalysts for Hydrogenation of Carbon Dioxide and Fischer-Tropsch Synthesis [J]. Chinese Journal of Applied Chemistry, 2020, 37(10): 1099-1111. |
[13] | CAI Yi,GUO Hongchen,CAO Han,GAO Fengxiang,ZHOU Qinghai,WANG Xianhong. Synthesis and Properties of Ultraviolet-Irradiation Resistant Carbon Dioxide Copolymer [J]. Chinese Journal of Applied Chemistry, 2019, 36(11): 1248-1256. |
[14] | GUO Hongchen, QIN Yusheng, WANG Xianhong, WANG Fosong. Copolymerization of Carbon Dioxide and Propylene Oxide under Aluminum Porphyrin Catalyst [J]. Chinese Journal of Applied Chemistry, 2019, 36(10): 1118-1127. |
[15] | Shuang LENG, Tao WANG, Min YANG, Yanzhi ZHAO, Wei LU, Ruoming WANG, Guoying SUN. Preparation and Electrochemical Performance of Nitrogen Doped Carbon Materials Based on Polydopamine [J]. Chinese Journal of Applied Chemistry, 2018, 35(4): 477-483. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||