Chinese Journal of Applied Chemistry ›› 2022, Vol. 39 ›› Issue (4): 540-558.DOI: 10.19894/j.issn.1000-0518.210461
• Review • Previous Articles Next Articles
Ke WANG, Xiao WANG(), Shu-Yan SONG
Received:
2021-09-10
Accepted:
2021-12-10
Published:
2022-04-01
Online:
2022-04-19
Contact:
Xiao WANG
About author:
skybyyn@ciac.ac.cnSupported by:
CLC Number:
Ke WANG, Xiao WANG, Shu-Yan SONG. Recent Advances in Direct Oxidation of Methane to Methanol[J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 540-558.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.210461
Fig.10 Energy network diagram of Fe2O3 (0001) surface activation of CH4[45]Yellow O: lattice O; red O: iron-based O; brown arrows: CH4 decomposition; yellow and blue arrows represent the oxidative decomposition of CH4 in lattice O and iron-based O, respectively; green dotted arrows represent the formation of CO2 and H2O; The purple arrow indicates the regeneration of the active site; the curved arrow indicates the adsorption/desorption of gas phase species
催化剂 Catalyst | 组成 Composition | 氧化剂 Oxidant | 反应条件 Reaction conditions | 选择性 Selective | 转化率 Conversion | 产量/h Yields | 参考文献 Ref. |
---|---|---|---|---|---|---|---|
Cu?MAZ | n(Si)/n(Al)=4∶3 4.4%(mass fraction)Cu | O2 | 723 K,O2;473 K, | 150 μmol/gcat、 200 μmol/g TON=0.48 | [ | ||
Cu?MAZ (棒状) (rod) | n(Si)/n(Al)=4.32 4.64%(mass fraction)Cu | O2 | 723 K,O2;473 K, | 197 μmol/g | [ |
Table 1 Synthesis of CH3OH by Cu?zeolite catalyst activated CH4 in recent years
催化剂 Catalyst | 组成 Composition | 氧化剂 Oxidant | 反应条件 Reaction conditions | 选择性 Selective | 转化率 Conversion | 产量/h Yields | 参考文献 Ref. |
---|---|---|---|---|---|---|---|
Cu?MAZ | n(Si)/n(Al)=4∶3 4.4%(mass fraction)Cu | O2 | 723 K,O2;473 K, | 150 μmol/gcat、 200 μmol/g TON=0.48 | [ | ||
Cu?MAZ (棒状) (rod) | n(Si)/n(Al)=4.32 4.64%(mass fraction)Cu | O2 | 723 K,O2;473 K, | 197 μmol/g | [ |
Fig.16 The effect of water on the catalyst catalyzing the product selectivity improvement of CH4 to CH3OH (a) CeO2/Cu2O/Cu(111) catalyst,SAC=0.4[81];(b)Ni/CeO2(111) catalyst,SAC=0.15[83](T=450 K,pCH4=0.1 MPa,pO2=0.05 MPa)
Fig.17 The catalytic effect and structure information of Ru x Ir1-x /CuO catalyst (a) CH3OH and by-product yield; (b) selectivity; (c) charge analysis structure model[85]
1 | YORK A P E, XIAO T C, GREEN M L H. Brief overview of the partial oxidation of methane to synthesis gas[J]. Top Catal, 2003, 22(3/4): 345-358. |
2 | VAN A A. Methane. a review[J]. J Environ Sci (China), 2012, 9(1): 5-30. |
3 | LIN C Y, ZHANG X W, FANG X C, et al. Advances in research on low-temperature activation of methane to methanol[J]. Chem Ind Eng Prog, 2012, 31(10): 2124-2129, 2161. |
4 | DA SILVA M J. Synthesis of methanol from methane: challenges and advances on the multi-step (syngas) and one-step routes (DMTM)[J]. Fuel Process Technol, 2016, 145: 42-61. |
5 | RAVI M, RANOCCGIARI M, VAN B J A. The direct catalytic oxidation of methane to methanol-a critical assessment[J]. Angew Chem Int Ed, 2017, 56(52): 16464-16483. |
6 | HAN B Z, YANG Y, XU Y Y, et al. A review of the direct oxidation of methane to methanol[J]. Chin J Catal, 2016, 37(8): 1206-1215. |
7 | KIM Y, KIM T Y, LEE H, et al. Distinct activation of Cu-MOR for direct oxidation of methane to methanol[J]. Chem Commun, 2017, 53(29): 4116-4119. |
8 | SUSHKEVICH V L, PALAGIN D, RANOCCHIARI M, et al. Selective anaerobic oxidation of methane enables direct synthesis of methanol[J]. Science, 2017, 356(6337): 523. |
9 | GELETII Y V, SHILOV A E. Catalytic-oxidation of alkanes by molecular oxidation-oxidation of methane in the presence of platinum salts and heteropoly acids[J]. Kinet Catal, 1983, 24: 413-416. |
10 | SEN A, GRETZ E, OLIVER T F, et al. Palladium(II) mediated oxidative functionalization of alkanes and arenes[J]. New J Chem, 1989, 13(10/11): 755-760. |
11 | PERIANA R A, TAUBE D J, EVITT E R, et al. A mercury-catalyzed, high-yield system for the oxidation of methane to methanol[J]. Science, 1993, 259(5093): 340-343. |
12 | PERIANA R A, TAUBE D J, GAMBLE S, et al. Platinum catalysts for the high-yield oxidation of methane to a methanol derivative[J]. Science, 1998, 280(5363): 560-564. |
13 | TIAN Y D, PIAO L Y, CHEN X B. Research progress on the photocatalytic activation of methane to methanol[J]. Green Chem, 2021, 23(10): 3526-3541. |
14 | BJERRUM N J, XIAO G, HJULER H A A G E. A process for the catalytic oxidation of hydrocabons[P]. European Patent Office Publ. of Application with search report EP19980954247. 11 Nov 1998. |
15 | 陈立宇, 杨伯伦, 张秀成, 等. 甲烷液相部分氧化合成甲醇过程研究[J]. 高校化学工程学报, 2005, 19(1): 54-58. |
CHEN L Y, YANG B L, ZHANG X C, et al. Study of catalysis oxidation of methane to methanol in liquid phase[J]. J Chem Eng Chin Univ, 2005, 19(1): 54-58. | |
16 | XU F, WU Y, LI C, et al. Mechanism study of Pd(OAc)2-catalyzed selective oxidation of methane to methanol in acetic acid solution[J]. Nat Gas Chem Ind, 2016, 41(1): 33-36. |
17 | LIU Y F, DU L K. Theoretical study of the oxidation of methane to methanol by the (CuCuII)-Cu-II(mu-O)(2)Cu-III(7-N-Etppaz) (1+) complex[J]. Inorg Chem, 2018, 57(6): 3261-3271. |
18 | ZHANG L, SUN Z X, LANG J Y, et al. Direct conversion of methane to oxygenates catalyzed by iron(III) chloride in water at near ambient temperature[J]. Int J Energy Res, 2021, 45(2): 2581-2592. |
19 | OHKUBO K, HIROSE K. Light-driven C-H oxygenation of methane into methanol and formic acid by molecular oxygen using a perfluorinated solvent[J]. Angew Chem Int Ed, 2018, 57(8): 2126-2129. |
20 | AYODELE O B. Structure and reactivity of ZSM-5 Supported oxalate ligand functionalized nano-Fe catalyst for low temperature direct methane conversion to methanol[J]. Energy Convers Manage, 2016, 126: 537-547. |
21 | SZECSENYI A, LI G N, GASCON J, et al. Mechanistic complexity of methane oxidation with H2O2 by single-site Fe/ZSM-5 catalyst[J]. ACS Catal, 2018, 8(9): 7961-7972. |
22 | OSADCHII D Y, OLIVOS-SUAREZ A I, SZECSENYI A, et al. Isolated Fe sites in metal organic frameworks catalyze the direct conversion of methane to methanol[J]. ACS Catal, 2018, 8(6): 5542-5548. |
23 | XIAO P P, WANG Y, NISHITOBA T, et al. Selective oxidation of methane to methanol with H2O2 over an Fe-MFI Zeolite catalyst using sulfolane solvent[J]. Chem Commun, 2019, 55(20): 2896-2899. |
24 | SHAVI R, HIREMATH V, SEO J G. Radical-initiated oxidative conversion of methane to methanol over metallic iron and copper catalysts[J]. Mol Catal, 2018, 445: 232-239. |
25 | LIU C C, MOU C Y, YU S S F, et al. Heterogeneous formulation of the tricopper complex for efficient catalytic conversion of methane into methanol at ambient temperature and pressure[J]. Energy Environ Sci, 2016, 9(4): 1361-1374. |
26 | BOKARE A D, CHOI W Y. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes[J]. J Hazard Mater, 2014, 275: 121-135. |
27 | KWON Y, KIM T Y, KWON G, et al. Selective activation of methane on single-atom catalyst of rhodium dispersed on zirconia for direct conversion[J]. J Am Chem Soc, 2017, 139(48): 17694-17699. |
28 | TANG Y, LI Y T, FUNG V, et al. Single rhodium atoms anchored in micropores for efficient transformation of methane under mild conditions[J]. Nat Commun, 2018, 9(1): 1-11. |
29 | ZHAO Q, LIU B, XU Y B, et al. Insight into the active site and reaction mechanism for selective oxidation of methane to methanol using H2O2 on a Rh-1/ZrO2 catalyst[J]. New J Chem, 2020, 44(4): 1632-1639. |
30 | SERRA M R, MICHEL F M, KANG Y J, et al. Decomposition of hydrogen peroxide catalyzed by AuPd nanocatalysts during methane oxidation to methanol[J]. ACS Catal, 2020, 10(9): 5115-5123. |
31 | SAJITH P K, STAYKOV A, YOSHIDA M, et al. Theoretical study of the direct conversion of methane to methanol using H2O2 as an oxidant on Pd and Au/Pd surfaces[J]. J Phys Chem C, 2020, 124(24): 13231-13239. |
32 | AGARWAL N, FREAKLEY S J, MC VICKER REBECCA U, et al. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions[J]. Science, 2017, 358(6360): 223-226. |
33 | YAN Y, CHEN C L, ZOU S H, et al. High H2O2 utilization promotes selective oxidation of methane to methanol at low temperature[J]. Front Chem, 2020, 8: 252. |
34 | AB RAHIM M H, FORDE M M, HAMMONDa C, et al. Systematic study of the oxidation of methane using supported gold palladium nanoparticles under mild aqueous conditions[J]. Top Catal, 2013, 56(18/20): 1843-1857. |
35 | WILLIAMS C, CARTER J H, DUMMER N F, et al. Selective oxidation of methane to methanol using supported AuPd catalysts prepared by stabilizer-free sol-immobilization[J]. ACS Catal, 2018, 8(3): 2567-2576. |
36 | AB RAHIM M H, ARMSTRONG R D, HAMMOND C, et al. Low Temperature selective oxidation of methane to methanol using titania supported gold palladium copper catalysts[J]. Catal Sci Technol, 2016, 6(10): 3410-3418. |
37 | HUANG W X, ZHANG S R, TANG Y, et al. Low-temperature transformation of methane to methanol on Pd1O4 single sites anchored on the internal surface of microporous silicate[J]. Angew Chem Int Ed, 2016, 55(43): 13441-13445. |
38 | LEWIS R J, BARA-ESTAUN A, AGARWAL N, et al. The direct synthesis of H2O2 and selective oxidation of methane to methanol using HZSM-5 supported AuPd catalysts[J]. Catal Lett, 2019, 149(11): 3066-3075. |
39 | HAMMOND CERI, JENKINS R L, DIMITRATOS N, et al. Catalytic and mechanistic insights of the low-temperature selective oxidation of methane over Cu-promoted Fe-ZSM-5[J]. Chem-Eur J, 2012, 18(49): 15735-15745. |
40 | XU J, ARMSTRONG R D, SHAW G, et al. Continuous selective oxidation of methane to methanol over Cu- and Fe-modified ZSM-5 catalysts in a flow reactor[J]. Catal Today, 2016, 270: 93-100. |
41 | FANG Z H, MURAYAMA H, ZHAO Q, et al. Selective mild oxidation of methane to methanol or formic acid on Fe-MOR catalysts[J]. Catal Sci Technol, 2019, 9(24): 6946-6956. |
42 | BAI S,XU Y, WANG P, et al. Activating and converting CH4 into CH3OH via CuPdO2/CuO nanointerface[J]. ACS Catal, 2019, 8(9): 6938-6944. |
43 | GERMAN E D, SHEINTUCH M. Predicting CH4 dissociation kinetics on metals: trends, sticking coefficients, H tunneling, and kinetic isotope effect[J]. J Phys Chem C, 2013, 117(44): 22811-22826. |
44 | BAI S X, YAO Q, XU Y, et al. Strong synergy in a lichen-like RuCu nanosheet boosts the direct methane oxidation to methanol[J]. Nano Energy, 2020, 71: 104566. |
45 | TANG J J, LIU B. Reactivity of the Fe2O3(0001) surface for methane oxidation: a GGA plus U study[J]. J Phys Chem C, 2016, 120(12): 6642-6650. |
46 | BARONA M, GAGGIOLI C A, GAGLIARDI L, et al. DFT study on the catalytic activity of ALD-grown diiron oxide nanoclusters for partial oxidation of methane to methanol[J]. J Phys Chem A, 2020, 124(8): 1580-1592. |
47 | HALL J N, BOLLINI P. Low-temperature, ambient pressure oxidation of methane to methanol over every tri-iron node in a metal-organic framework material[J]. Chem-Eur J, 2020, 26(70): 16639-16643. |
48 | DASIREDDY V D B C, HANZRL D, BHARUTH R K, et al. The effect of oxidant species on direct, non-syngas conversion of methane to methanol over an FePO4 catalyst material[J]. RSC Adv, 2019, 9(53): 30989-31003. |
49 | ROONGCHAROEN T, IMOPENG S, KUNGWAN N, et al. Revealing the effect of N-content in Fe doped graphene on its catalytic performance for direct oxidation of methane to methanol[J]. Appl Surf Sci, 2020, 527: 146833. |
50 | IMYEN T, ZNOUTINE E, SUTTIPAT D, et al. Methane utilization to methanol by a hybrid zeolite@metal-organic framework[J]. ACS Appl Mater Interfaces, 2020, 12(21): 23812-23821. |
51 | SHIOTA Y, YOSHIZAWA K. Methane-to-methanol conversion by first-row transition-metal oxide ions: ScO+, TiO+, VO+, CrO+, MnO+, FeO+, CoO+, NiO+, and CuO+[J]. J Am Chem Soc, 2000, 122(49): 12317-12326. |
52 | SHIOTA Y, JUHASZ G, YOSHIZAWA K. Role of Tyrosine residue in methane activation at the dicopper site of particulate methane monooxygenase: a density functional theory study[J]. Inorg Chem, 2013, 52(14): 7907-7917. |
53 | LI G N, VASSILEV P, SANCHEZ S M, et al. Stability and reactivity of copper oxo-clusters in ZSM-5 zeolite for selective methane oxidation to methanol[J]. J Catal, 2016, 338: 305-312. |
54 | MAHYUDDIN M H, SHIOTA Y, STAYKOV A, et al. Theoretical overview of methane hydroxylation by copper-oxygen species in enzymatic and zeolitic catalysts[J]. Acc Chem Res, 2018, 51(10): 2382-2390. |
55 | PALAGIN D, SUSHKEVICH V L, VAN BOKHOVEN J A. Water molecules facilitate hydrogen release in anaerobic oxidation of methane to methanol over Cu/mordenite[J]. ACS Catal, 2019, 9(11): 10365-10374. |
56 | MA C, TAN X J, ZHANG H J, et al. Direct conversion of methane to methanol over Cu exchanged mordenite: effect of counter ions[J]. Chin Chem Lett, 2020, 31(1): 235-238. |
57 | SUSHKEVICH V L, PALAGIN D, VAN BOKHOVEN J A. The effect of the active-site structure on the activity of copper mordenite in the aerobic and anaerobic conversion of methane into methanol[J]. Angew Chem Int Ed, 2018, 57(29): 8906-8910. |
58 | MEYET J, SEARLES K, NEWTON M A, et al. Monomeric copper(II) sites supported on alumina selectively convert methane to methanol[J]. Angew Chem Int Ed, 2019, 58(29): 9841-9845. |
59 | IKUNO T, ZHENG J, VJUNOV A, et al. Methane oxidation to methanol catalyzed by Cu-oxo clusters stabilized in NU-1000 metal-organic framework[J]. J Am Chem Soc, 2017, 139(30): 10294-10301. |
60 | LE HA V, PARISHAN S, SAGALTCHIK A, et al. Stepwise methane-to-methanol conversion on CuO/SBA-15[J]. Chem - Eur J, 2018, 24(48): 12592-12599. |
61 | WANG X T, SHISHKIN A, HEMMINGSSON F, et al. Methane adsorption and methanol desorption of copper modified boron silicate[J]. RSC Adv, 2018, 8(63): 36369-36374. |
62 | KVANDE K, PAPPAS D K., DYBALLAy M, et al. Comparing the nature of active sites in Cu-loaded SAPO-34 and SSZ-13 for the direct conversion of methane to methanol[J]. Catalysts, 2020, 10(2): 191. |
63 | KNORPP A J, PINAR A B, NEWTON M A, et al. Copper-exchanged omega (MAZ) zeolite: copper-concentration dependent active sites and its unprecedented methane to methanol conversion[J]. ChemCatChem, 2018, 10(24): 5593-5596. |
64 | KNORPP A J, NEWTON M A, SUSHKEVICH V L, et al. The influence of zeolite morphology on the conversion of methane to methanol on copper-exchanged omega zeolite (MAZ)[J]. Catal Sci Technol, 2019, 9: 2806-2811. |
65 | KNORPP A J, NEWTON M A, MIZUNO S C M, et al. Comparative performance of Cu-zeolites in the isothermal conversion of methane to methanol[J]. Chem Commun, 2019, 55(78): 11794-11797. |
66 | TOMKINS P, MANSOURI A, BOZBAG S E, et al. Isothermal cyclic conversion of methane into methanol over copper-exchanged zeolite at low temperature[J]. Angew Chem Int Ed, 2016, 55(18): 5467-5471. |
67 | ZENG R, LI L Y, SHIMIZU T, et al. Direct conversion of methane to methanol over copper-exchanged zeolite under mild conditions[J]. J Energy Eng, 2020, 146(6): 04020061. |
68 | NARSIMHAN K, IYOKI K, DINH K, et al. Catalytic oxidation of methane into methanol over copper-exchanged zeolites with oxygen at low temperature[J]. ACS Cent Sci, 2016, 2(6): 424-429. |
69 | PAPPAS D K, BORFECCHIA E, DYBALLA M, et al. Methane to methanol: structure activity relationships for Cu-CHA[J]. J Am Chem Soc, 2017, 139(42): 14961-14975. |
70 | IPEK B, LOBO R F. Catalytic conversion of methane to methanol on Cu-SSZ-13 using N2O as oxidant[J]. Chem Commun, 2016, 52(91): 13401-13404. |
71 | MEMIOGLU O, IPEK B. A potential catalyst for continuous methane partial oxidation to methanol using N2O: Cu-SSZ-39[J]. Chem Commun, 2021, 57(11): 1364-1367. |
72 | KOISHYBAY A, SHANTZ D F. Water is the oxygen source for methanol produced in partial oxidation of methane in a flow reactor over Cu-SSZ-13[J]. J Am Chem Soc, 2020, 142(28): 11962-11966. |
73 | ZHU J, SUSHKEVICH V L, KNORPP A J, et al. Cu-erionite zeolite achieves high yield in direct oxidation of methane to methanol by isothermal chemical looping[J]. Chem Mater, 2020, 32(4): 1448-1453. |
74 | BUNTING R J, THOMPSON J, HU P. The mechanism and ligand effects of single atom rhodium supported on ZSM-5 for the selective oxidation of methane to methanol[J]. Phys Chem Chem Phys, 2020, 22(20): 11686-11694. |
75 | MAHYUDDIN M H, TANAKA S, SHIOTA Y, et al. Room-temperature activation of methane and direct formations of acetic acid and methanol on Zn-ZSM-5 zeolite: a mechanistic DFT study[J]. Bull Chem Soc Jpn, 2020, 93(3): 345-354. |
76 | NEEMATOLLAHI P, NEYTS E C. Direct oxidation of methane to methanol on Co embedded N-doped graphene: comparing the role of N2O and O2 as oxidants[J]. Appl Catal A, 2020, 602: 04020061. |
77 | YUAN J Y, ZHANG W H, LI X X, et al. A high performance catalyst for methane conversion to methanol: graphene supported single atom Co[J]. Chem Commun, 2018, 54(18): 2284-2287. |
78 | MOUSAVIAN P, ESRAFILI M D. Methane oxidation into methanol catalyzed by TM-snchored C24N24 nanoclusters (TM = Fe, Co and Ni): a DFT study[J]. Inorg Chem Commun, 2020, 122: 108317. |
79 | CHANG C C, LIU C Y, SUN Y C. Effective methane conversion to methanol on Bi-functional graphene-oxide-supported platinum nanoclusters (Pt-5)-a DFT study[J]. Phys Chem Chem Phys, 2020, 122: 4967-4973. |
80 | ZUO Z J, RAMIREZ P J, SENANAYAKE S D, et al. Low-temperature conversion of methane to methanol on CeOx/Cu2O catalysts: water controlled activation of the C—H bond[J]. J Am Chem Soc, 2016, 138(42): 13810-13813. |
81 | LIU Z Y, HUANG E W, OROZCO I, et al. Water-promoted interfacial pathways in methane oxidation to methanol on a CeO2-Cu2O catalyst[J]. Science, 2020, 368(6490): 513-517. |
82 | KYE S H, PARK H S, ZHANG R Q, et al. Partial oxidation of methane to methanol by isolated Pt catalyst supported on a CeO2 nanoparticle[J]. J Chem Phys, 2020, 152(5): 054715. |
83 | LUSTEMBERG P G, PALOMINO R M, GUTIERREZ R A, et al. Direct conversion of methane to methanol on Ni-ceria surfaces: metal-support interactions and water-enabled catalytic conversion by site blocking[J]. J Am Chem Soc, 2018, 140(24): 7681-7687. |
84 | YANG L, HUANG J X, MA R, et al. Metal-organic framework-derived IrO2/CuO catalyst for selective oxidation of methane to methanol[J]. ACS Energy Lett, 2019, 4(12): 2945-2951. |
85 | YANG L, HUANG J X, DAI S, et al. Uniphase ruthenium-iridium alloy-based electronic regulation for electronic structure-function study in methane oxidation to methanol[J]. J Mater Chem A, 2020, 8(45): 24024-24030. |
86 | BARONA M, SNURR R Q. Exploring the Tunability of trimetallic MOF nodes for partial oxidation of methane to methanol[J]. ACS Appl Mater Interfaces, 2020, 12(25): 28217-28231. |
87 | TOMKINS P, MANSOURI A, SUSHKEVICH V L, et al. Increasing the activity of copper exchanged mordenite in the direct isothermal conversion of methane to methanol by Pt and Pd doping[J]. Chem Sci, 2019, 10(1): 167-171. |
[1] | Yi-Cheng ZHANG, Fei ZHA, Xiao-Hua TANG, Yue CHANG, Hai-Feng TIAN, Xiao-Jun GUO. Research Progress of Heterogeneous Catalytic Preparation of Organic Peroxides [J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 769-788. |
[2] | Xing-Quan XIONG, Hui ZHANG, Li-Zhu GAO. Progress in Chemical Modification and Application of Lignin [J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 806-819. |
[3] | SUN Zhicong, MENG Qinglei, MA Rongpeng, GE Junjie, LIU Changpeng, XING Wei. Promotion Effect of Functionalized Carbon Nitride on Pd-Based Catalyst for Hydrogen Generation from Formic Acid [J]. Chinese Journal of Applied Chemistry, 2020, 37(10): 1187-1194. |
[4] | ZHU Chenyang, LUO Zhixiong, CHEN Cheng, Chaemchuen Somboon, Verpoort Francis. Zeolitic Imidazolate Framework-67 Efficiently Catalyzes the Ring-Opening Polymerization of L-Lactide [J]. Chinese Journal of Applied Chemistry, 2019, 36(4): 414-422. |
[5] | ZHU Chenyang, LUO Zhixiong, CHEN Cheng, Chaemchuen Somboon, Verpoort Francis. Zeolitic Imidazolate Framework-67 Efficiently Catalyzes the Ring-Opening Polymerization of L-Lactide [J]. Chinese Journal of Applied Chemistry, 2019, 36(4): 0-0. |
[6] | LIU Chunyan*, XIAO Benneng. Ordered Mesoporous Carbon CMK-3 Immobilized with Ionic Liquids as Efficient Catalysts for the Synthesis of Cyclic Carbonates from CO2 and Epoxides [J]. Chinese Journal of Applied Chemistry, 2014, 31(04): 406-410. |
[7] | FU Zhenyu1, LI Zhiguang1, GUO Kai1, XIA Xingliang1, PENG Haijun1, HE Chunlian2*. Catalytic Ozonation of Textile Dyeing Sludge with Heterogeneous Catalysts of Carbon-supported Transition Metal Compounds [J]. Chinese Journal of Applied Chemistry, 2013, 30(10): 1169-1175. |
[8] | Pan Haishui, Zhou Qingwei, Chen Anjun, Liu Dingjiang, Deng Jingfa. CATALYTIC SYNTHESS OF DIETHYL ETHER USNG HETEROPOLY ACID [J]. Chinese Journal of Applied Chemistry, 1989, 0(2): 11-14. |
[9] | Zheng Yuzhen, Yang Tianrong, Yu Zuolong, Zhao Jinglin, Cai Hequan, Zhao Qingyue . THE STRUCTURE OF ACTIVE PHASES OF CERIUM-CONTAINING MULTICOMPONENT OXIDE AND ITS CATALYTIC BEHAVIOUR FOR AMMOXIDATION OF PROPYLENE [J]. Chinese Journal of Applied Chemistry, 1988, 0(2): 13-17. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||