1 |
MA T T, ZHOU L Q, CHEN L, et al. Oxytetracycline toxicity and its effect on phytoremediation by sedum plumbizincicola and Medicago sativa in metal-contaminated soil[J]. J Agric Food Chem, 2016, 64(42): 8045-8053.
|
2 |
GAJDA A, JABLONSKI A, BLADEK T, et al. Oral fluid as a biological material for antemortem detection of oxytetracycline in pigs by liquid chromatography-tandem mass spectrometry[J]. J Agric Food Chem, 2017, 65(2): 494-500.
|
3 |
MACMAHON S, BEGLEY T H, DIACHENKO G W, et al. A liquid chromatography-tandem mass spectrometry method for the detection of economically motivated adulteration in protein-containing foods[J]. J Chromatogr A, 2012, 1220: 101-107.
|
4 |
KRAMER W, WESS G, SCHUBERT G, et al. Liver-specific drug targeting by coupling to bile acids[J]. J Biol Chem, 1992, 267(26): 18598-18604.
|
5 |
GAUTROT J E, ZHU X X. Biodegradable polymers based on bile acids and potential biomedical applications[J]. J Biomater Sci, (Polym Ed), 2006, 17(10): 1123-1139.
|
6 |
VIRTANEN E, KOLEHMAINEN E. Use of bile acids in pharmacological and supramolecular applications[J]. Chem Inform, 2004, 35(45): 3385-3399.
|
7 |
CHEN D, SONG P, JIANG F, et al. pH-Responsive mechanism of a deoxycholic acid and folate co-modified chitosan micelle under cancerous environment[J]. J Physl Chem B, 2013, 117(5): 1261-1268.
|
8 |
PARK J, JEONG J H, AL-HILAL T A, et al. Size controlled heparin fragment-deoxycholic acid conjugate showed anticancer property by inhibiting VEGF165[J]. Bioconjugate Chem, 2015, 26(5): 932-940
|
9 |
PARK J, JEON O C, YUN J, et al. End-site-specific conjugation of enoxaparin and tetradeoxycholic acid using nonenzymatic glycosylation for oral delivery[J]. J Med Chem, 2016: 10520.
|
10 |
WANG X Y, MA Q, WEN C C, et al. Folic acid and deoxycholic acid derivative modified Fe3O4 nanoparticles for efficient pH-dependent drug release and multi-targeting against liver cancer cells[J]. RSC Adv, 2021, 11: 39804-39812.
|
11 |
GONG T, WANG X Y, MA Q, et al. Triformyl cholic acid and folic acid functionalized magnetic graphene oxide nanocomposites: multiple-targeted dual-modal synergistic chemotherapy/photothermal therapy for liver cancer[J]. J Inorg Biochem, 2021, 223: 111558.
|
12 |
GONG T, CHENG R N, WANG X Y, et al. Supramolecular-interaction-mediated aggregation of anticarcinogens on triformyl cholic acid-functionalized Fe3O4 nanoparticles and their dual-targeting treatment for liver cancer[J]. New J Chem, 2021, 45: 6880-6888.
|
13 |
MUKHOPADHYAY S, MAITRA U, IRA I, et al. Structure and dynamics of a molecular hydrogel derived from a tripodal cholamide[J]. J Am Chem Soc, 2005, 126(48): 15905-15914.
|
14 |
赵美玲, 弓韬, 李丹, 等. 环糊精聚合物功能化的Fe3O4磁性纳米粒子作为药物载体的研究[J]. 山西大学学报(自然科学版), 2018, 41(1): 182-188.
|
|
ZHAO M L,GONG T,LI D,et al. Investigation of cyclodextrin polymer functionalized magnetic nanoparticles as drug carriers[J]. J Shanxi Univ(Nat Sci Ed), 2018, 41(1): 182-188.
|
15 |
WEN C C, CHENG R N, GONG T, et al. β-Cyclodextrin-cholic acid-hyaluronic acid polymer coated Fe3O4-graphene oxide nanohybrids as local chemo-photothermal synergistic agents for enhanced liver tumor therapy[J]. J Colloid Surface B: Biointerfaces, 2021, 199: 111510.
|
16 |
CARUNTU D, CSRUNTU G, CHEN Y, et al. Synthesis of variable-sized nanocrystals of Fe3O4 with high surface reactivity[J]. Chem Mater, 2004, 16(25): 5527-5534.
|
17 |
弓韬, 黄昱, 郭国英, 等. 线性麦芽糊精聚合物功能化Fe3O4纳米复合物药物载体的合成和应用[J]. 应用化学, 2019, 36(2): 161-169.
|
|
GONG T, HUANG Y, GUO G Y, et al. Linear maltodextrin polymer functionalized Fe3O4 magnetic nanoparticles as drug carriers[J]. Chinese J Appl Chem, 2019, 36(2): 161-169.
|
18 |
JONES E M, COCHRANE C A, PERCIVAL S L. The effect of pH on the extracellular matrix and biofilms[J]. Adv Wound Care, 2015, 4(7): 431-439.
|