Chinese Journal of Applied Chemistry ›› 2022, Vol. 39 ›› Issue (1): 99-109.DOI: 10.19894/j.issn.1000-0518.210484
• Review • Previous Articles Next Articles
HUAI Meng-Jiao,LIU Tao-Xue-Ting,JIANG Zhong-Yi()
Received:
2021-09-28
Accepted:
2021-11-04
Published:
2022-01-01
Online:
2022-01-10
Contact:
Zhong-Yi JIANG
About author:
zhyjiang@tju.edu.cnSupported by:
CLC Number:
HUAI Meng-Jiao, LIU Tao-Xue-Ting, JIANG Zhong-Yi. Research Progress of Artificial Water Channels Inspired by Aquaporin[J]. Chinese Journal of Applied Chemistry, 2022, 39(1): 99-109.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.210484
Fig.3 Artificial water channel based on 3A size(a)Helical tube formed by zwitterionic coordination polymers[32];(b)Imidazole I-quartets water channels[16];(c)Aquafoldamer-based water channels[34]
人工水通道 AWC | 孔道尺寸 Pore size/nm | 单通道水通量(个H2O/s) Water permeability per channel(H2O/s) | 离子排斥能力 Salt rejection |
---|---|---|---|
两性离子通道[ Zwitterionic coordination polymers water channels | 0.26 | - | - |
四聚体咪唑通道[ Imidazole I?quartets water channels | 0.26 | 1.5×106 | √ |
Aquafoldamer通道 Aquafoldamer?based water channels | 0.28 | 2.2×108[ | √ |
1.6×109[ | √ | ||
3×109[ | √ | ||
杂化芳烃 (PAH[ Peptide?appended hybrid [ | ~0.3 | >109 | √ |
Table 1 Pore size, water permeability and salt rejection of artificial water channels
人工水通道 AWC | 孔道尺寸 Pore size/nm | 单通道水通量(个H2O/s) Water permeability per channel(H2O/s) | 离子排斥能力 Salt rejection |
---|---|---|---|
两性离子通道[ Zwitterionic coordination polymers water channels | 0.26 | - | - |
四聚体咪唑通道[ Imidazole I?quartets water channels | 0.26 | 1.5×106 | √ |
Aquafoldamer通道 Aquafoldamer?based water channels | 0.28 | 2.2×108[ | √ |
1.6×109[ | √ | ||
3×109[ | √ | ||
杂化芳烃 (PAH[ Peptide?appended hybrid [ | ~0.3 | >109 | √ |
Fig.6 Arrangement of water molecules in (a) hydrophilic channel (b) hydrophobic channel(c) hydrophilic and hydrophobic water level point alternating channel[44]
Fig.7 The arrangement of water molecules in the artificial water channel(a)Helical tube formed by zwitterionic coordination polymers[32];(b)Imidazole I-quartets water channels[16];(c) Chemical and crystal structures of 1, encapsulating 1D chain of dichloromethane (CH2Cl2) or methanol (MeOH)90 molecules. And Chemical and crystal structures of 2, encapsulating the 1D chain of water or MeOH molecules[36]; (d) Different H-bonding patterns for water in the bulk state and CNTPs of different diameters[49]
1 | ELIMELECH M, PHILLIP W A.The future of seawater desalination: energy, technology, and the environment[J]. Science, 2011, 333(6043): 712-717. |
2 | HU X B, CHEN Z, TANG G, et al. Single-molecular artificial transmembrane water channels[J]. J Am Chem Soc, 2012, 134(20): 8384-8387. |
3 | LIU Y, HEJAZI M, KYLE P, et al. Global and regional evaluation of energy for water[J]. Environ Sci Technol, 2016, 50(17): 9736-9745. |
4 | TANG C, WANG Z, PETRINIC I, et al. Biomimetic aquaporin membranes coming of age[J]. Desalination, 2015, 368: 89-105. |
5 | VOGEL J, GROTH J S, NIELSE N, et al. Hollow fiber module having composite thin film layer modified fiber comprises an aquaporin water channel: Korea, 20-2014-0004365[P]. 2014-07-21. |
6 | SPULBER M, GERSTANDT K. Diblock copolymer vesicles and separation membranes comprising aquaporin water channels and methods of making and using them: WO 2018/141985 Al[P]. 2018-09-08. |
7 | DAMIANO A E. Water channel proteins in the human placenta and fetal membranes[J]. Placenta, 2011, 32: S207-S211. |
8 | GALIZIA L, PIZZINO A, FERNANDEZ J, et al. Functional interaction between AQP2 and TRPV4 in renal cells[J]. J Cell Biochem, 2012, 113(2): 580-589. |
9 | MATSUKI-FUKUSHIMA M, FUJITA-YOSHIGAKI J, MURAKAMI M, et al. Involvement of AQP6 in the mercury-sensitive osmotic lysis of rat parotid secretory granules[J]. J Membr Biol, 2013, 246(3): 209-214. |
10 | PRESTON G M, CARROLL T P, GUGGINO W B, et al. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein[J]. Science, 1992, 256(5055): 385-387. |
11 | CHRISPEELS M J, AGRE P. Aquaporins: water channel proteins of plant and animal cells[J]. Trends Biochem Sci, 1994, 19(10): 421-425. |
12 | CONNOLLY D L, SHANAHAN C M, WEISSBERG P L. The aquaporins: a family of water channel proteins[J]. Int J Biochem Cell Biol, 1998, 30(2): 169-172. |
13 | HONG W, TIAN T Z, XIAN S L, et al. Enhancing the separation performance by introducing bioadhesive bonding layer in composite pervaporation membranes for ethanol dehydration[J].Chinese J Chem Eng, 2015, 23(2): 372-378. |
14 | HUAI Q Z, WEI Q O, FENG Z, et al. Chiral crystallization of aromatic helical foldamers via complementarities in shape and end functionalities[J]. Chem Sci, 2012, 3: 2042. |
15 | WANG S F, XIE Y, HE G W, et al. Graphene oxide membranes with heterogeneous nanodomains for efficient CO2 separations[J]. Angew Chem Int Ed, 2017, 56(45): 14246-14251. |
16 | BARBOIU M, GILLES A. From natural to bioassisted and biomimetic artificial water channel system[J]. Acc Chem Res, 2013, 46(12): 2814-2823. |
17 | BARBOIU M. Artificial water channels: incipient innovative developments[J]. Chem Commun, 2016, 52(33): 5657- 5665. |
18 | HUO Y, ZENG H. “Sticky”-ends-guided creation of functional hollow nanopores for guest encapsulation and water transport[J]. Acc Chem Res, 2016, 49(5): 922-930. |
19 | SONG W, KUMAR M. Artificial water channels: toward and beyond desalination[J]. Curr Opin Chem Eng, 2019, 25: 9-17. |
20 | SONG W, LANG C, SHEN Y, et al. Design considerations for artificial water channel-based membranes[J]. Annu Rev Mater Res, 2018, 48(1): 57-82. |
21 | SHEN Y X, SONG W C, BARDEN D R, et al. Achieving high permeability and enhanced selectivity for angstrom-scale separations using artificial water channel membranes[J]. Nat Commun, 2018, 9(1): 2294. |
22 | TU Y M, SONG W, REN T, et al. Rapid fabrication of precise high-throughput filters from membrane protein nanosheets[J]. Nat Mater, 2020, 19(3): 347-354. |
23 | LANG C, YE D, SONG W, et al. Biomimetic separation of transport and matrix functions in lamellar block copolymer channel-based membranes[J]. ACS Nano, 2019, 13(7): 8292-8302. |
24 | ABAIE E, XU L, SHEN Y X. Bioinspired and biomimetic membranes for water purification and chemical separation: a review[J]. Front Environ Sci Eng, 2021, 15(6): 124. |
25 | GIWA A, HASAN S W, YOUSUF A, et al. Biomimetic membranes: a critical review of recent progress[J]. Desalination, 2017, 420: 403-424. |
26 | FUWAD A, RYU H, MALMSTADT N, et al. Biomimetic membranes as potential tools for water purification: preceding and future avenues[J]. Desalination, 2019, 458: 97-115. |
27 | GONEN T, WALZ T. The structure of aquaporins[J]. Q Rev Biophys, 2006, 39(4): 361-396. |
28 | GANG R, ANCHI C, VIJAY R, et al. Three-dimensional fold of the human AQP1 water channel determined at 4 Å resolution by electron crystallography of two-dimensional crystals embedded in ice[J]. J Mol Biol, 2000, 301(2): 369-387. |
29 | SUI H, HAN B G, LEE J, et al. Structural basis of water-specific transport through the AQP1 water channel[J]. Nature, 2001, 414: 872-878. |
30 | MURATA K, MITSUOKA K, HIRAI T, et al. Structural determinants of water permeation through Aquaporin-1[J]. Nature, 2000, 407: 599-605. |
31 | TAJKHORSHID, EMAD N, PETER J M, et al. Control of the selectivity of the aquaporin water channel family by global orientational tuning[J]. Science, 2002, 296(5567): 525-530. |
32 | FEI Z, ZHAO D, GELDBACH T J, et al. A Synthetic zwitterionic water channel: characterization in the solid state by X-ray crystallography and NMR spectroscopy[J]. Angew Chem, 2005, 117: 5866-5871. |
33 | SCHNEIDER, SUSANNE, LICSANDRU, et al. Columnar self-assemblies of triarylamines as scaffolds for artificial biomimetic channels for ion and for water transport[J]. J Am Chem Soc, 2017, 139(10): 3721-3727. |
34 | SHEN J, FAN J R, YE R J, et al. Polypyridine-based helical amide foldamer channels: rapid transport of water and protons with high ion rejection[J]. Angew Chem Int Ed, 2020, 132(32): 13430-13436. |
35 | SHEN, J, YE R, ROMANIES A, et al. Aquafoldmer-based aquaporin-like synthetic water channel[J]. J Am Chem Soc, 2020, 142 (22): 10050-10058. |
36 | SONG W, JOSHI H, CHOWDHURY R, et al. Artificial water channels enable fast and selective water permeation through water-wire networks[J]. Nat Nano, 2020, 15(1): 1-7. |
37 | ZHAO H, SHENG S, HONG Y, et al. Proton gradient-induced water transport mediated by water wires inside narrow aquapores of aquafoldamer molecules[J]. J Am Chem Soc, 2012, 136(40): 14270-14276. |
38 | XUE W, KO S, CHAVALIT R, et al. Binding TiO2 nanoparticles to forward osmosis membranes via MEMO-PMMA-Br monomer chains for enhanced filtration and antifouling performance[J]. RSC Adv, 2018, 8(34): 19024-19033. |
39 | HORNER A, SILIGAN C, CORNEAN A, et al. Positively charged residues at the channel mouth boost single-file water flow[J]. Faraday Discuss, 2018, 10: 1039. |
40 | GUAN K C, JIA Y D, LIN Y Q, et al. Chemically Converted graphene nanosheets for the construction of ion-exclusion nanochannel membranes[J]. Nano Lett, 2021, 21(8): 3495-3502. |
41 | LYNCH C I, RAO S L, SHANLIN M S P, et al. Water in nanopores and biological channels: a molecular simulation perspective[J]. Chem Rev, 2020, 120(18): 10298-10335. |
42 | ANDREAS H, FLORIAN Z, JOHANNES P, et al. The mobility of single-file water molecules is governed by the number of H-bonds they may form with channel-lining residues[J]. Sci Adv, 2015, 1(2): e1400083. |
43 | KAUCHER S, PETERCA M, DULCEY A, et al. Selective transport of water mediated by porous dendritic dipeptides[J]. J Am Chem Soc, 2007, 129(38): 11698-11699. |
44 | BARBOIU M. Artificial water channels[J]. Angew Chem Int Ed, 2012, 51(47): 11674-11676. |
45 | BARBOIU M. Imidazole-quartet water and proton dipolar channels[J]. Angew Chem Int Ed, 2011, 50(48): 11366-11372. |
46 | ZHAO Q, BUAHLER M J, Nonlinear viscous water at nanoporous two-dimensional interfaces resists high-speed flow through cooperativity[J]. Nano Lett, 2015, 15(6): 3939-3944. |
47 | SENDNER C, HORINEK D, BOCQVET L, et al. Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion[J]. Langmuir, 2009, 25(18): 10768-10781. |
48 | LICSANDRU E, KOCSIS I, SHEN Y X, et al. Salt-excluding artificial water channels exhibiting enhanced dipolar water and proton translocation[J]. J Am Chem Soc, 2016, 138(16): 5403-5409. |
49 | TUNUGUNTL R H, HENLEY R Y, YAO Y C, et al. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins[J]. Science, 2017, 357(6353): 792-796. |
50 | GENG J, KIM K, ZHANG J F, et al. Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes[J]. Nature, 2014, 514(7524): 612-615. |
51 | HUANG L B, VINCENZO M D, LI Y H. Artificial water channels: towards biomimetic membranes for desalination[J]. Chem Eur J, 2021, 27(7): 2224-2239. |
[1] | ZHAO Chang-Li, QIN Ming-Gao, DOU Xiao-Qiu, FENG Chuan-Liang. High Mechanical Stability and Osteogenesis of Chiral Supramolecular Hydrogel Induced by Inorganic Nanoparticles [J]. Chinese Journal of Applied Chemistry, 2022, 39(1): 177-187. |
[2] | WU Qing-Lin, REN Yu-Bin, ZHAI Xiao-Wei, CHEN Dong, LIU Kai. Protein Sequence Design Using Generative Models [J]. Chinese Journal of Applied Chemistry, 2022, 39(1): 3-17. |
[3] | JAING Fuxiang1, LIU Qiaozhen1, WANG Guo1, CHEN Heru1,2*. Synthesis of Piperidine Derivatives from 1,5-Diols [J]. Chinese Journal of Applied Chemistry, 2013, 30(07): 769-775. |
[4] | LI Huijing, WANG Haishui*. Effect of Boric Acid on the Crystallization of L-Lysine Monohydrochloride Dihydrate on Self-Assembled Monolayers of L-Cysteine [J]. Chinese Journal of Applied Chemistry, 2012, 29(09): 1041-1045. |
[5] | LIU Qian, LU Jun-Rui*, XIN Chun-Wei, BAO Xiu-Rong, LIU Yu-Qing, ZHU Shan-Shan, ZOU Min. Synthesis, Characterization and Antibacterial Properties of 5-Chloro -o-hydroxybenzyl Amino Acid Esters [J]. Chinese Journal of Applied Chemistry, 2010, 27(09): 1012-1016. |
[6] | CAI Dong-Qing1, WU Zheng-Yan1*, WU Lin1, WU Yue-Jin1, CHU Paul K2, YU Zeng-Liang1. Removal of Impurities in Carbon Nanotubes by Low Energy Ion Beam Irradiation [J]. Chinese Journal of Applied Chemistry, 2010, 27(08): 987-989. |
[7] | FENG Yi-Si1, DONG Wen-Jie1, ZHANG Bo1, SHANG Lin1, TAN Wen-Fei2, XU Hua-Jian1*. Synthesis of the Segment of Natural Cyclic Depsipeptide Stereocalpin A [J]. Chinese Journal of Applied Chemistry, 2010, 27(02): 240-242. |
[8] | RUAN Xiang-Yuan1*, ZENG Shao-Han2, CAI Meng-Zhao2, XU Jing-Wei3. Surface Morphology of Glutathione Complex with Cadmium and Copper via Atomic Force Microscope [J]. Chinese Journal of Applied Chemistry, 2009, 26(12): 1498-1500. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||