Chinese Journal of Applied Chemistry ›› 2022, Vol. 39 ›› Issue (1): 154-176.DOI: 10.19894/j.issn.1000-0518.210491
• Review • Previous Articles Next Articles
ZHOU Hui1,2,GUO Zhi-Guang1,2()
Received:
2021-10-03
Accepted:
2021-11-05
Published:
2022-01-01
Online:
2022-01-10
Contact:
Zhi-Guang GUO
About author:
zguo@hubu.edu.cnSupported by:
CLC Number:
ZHOU Hui, GUO Zhi-Guang. Recent Developments of Biomimetic Superwetting Materials for High Efficiency Water Collection[J]. Chinese Journal of Applied Chemistry, 2022, 39(1): 154-176.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.210491
Fig.1 (a) Optical images of the cactus[21];(b) SEM image of a single spine[21];(c) Mechanism of the fog harvesting on a spine[21];(d - f) Optical images of the desert beetle Stenocara sp[19];(g) Four model beetles with different size[35]
Fig.2 (a) Structure of dry silk of spider[20]; (b) Structure of wet-rebuilt spider silk[20]; (c) Water collected by Cotula fallax[44]; (d)Morphology of Syntrichia caninervis and the associated awns[45]
序号 No. | 生物 Creature | 结构特征 Structural feature | 液滴运输原因 The reason of droplet transport | 文献 Ref. |
---|---|---|---|---|
1 | 仙人掌 Cactus | 锥状刺+毛状体 Spines and trichomes | 粗糙度梯度+结构梯度Gradient of roughness and conical shape | |
2 | 沙漠甲虫 Desert beetle | 亲水凸起+疏水四周 Hydrophilic bugle and hydrophobic surroundings | 润湿性梯度 Gradient of wettability | |
3 | 蜘蛛丝 Spider silk | 纺锤-链接结构(湿环境) Periodic puffs and joints | 结构梯度 Gradient of morphology | |
4 | Cotula fallax叶 Cotula fallax leaf | 3D层次结构:叶子+绒毛Three?dimensional hierarchical structures: leaf and fluff | 多尺度梯度 Multiscale gradient | |
5 | 斗篷草 Lady's mantle | 超疏水叶片+亲水中心区 Hydrophilic areas on superhydrophobic surfaces | 润湿性梯度 Gradient of wettability | |
6 | 羽扇豆 Lupin | |||
7 | 大戟 Euphorbia |
Table 1 The water collection in nature
序号 No. | 生物 Creature | 结构特征 Structural feature | 液滴运输原因 The reason of droplet transport | 文献 Ref. |
---|---|---|---|---|
1 | 仙人掌 Cactus | 锥状刺+毛状体 Spines and trichomes | 粗糙度梯度+结构梯度Gradient of roughness and conical shape | |
2 | 沙漠甲虫 Desert beetle | 亲水凸起+疏水四周 Hydrophilic bugle and hydrophobic surroundings | 润湿性梯度 Gradient of wettability | |
3 | 蜘蛛丝 Spider silk | 纺锤-链接结构(湿环境) Periodic puffs and joints | 结构梯度 Gradient of morphology | |
4 | Cotula fallax叶 Cotula fallax leaf | 3D层次结构:叶子+绒毛Three?dimensional hierarchical structures: leaf and fluff | 多尺度梯度 Multiscale gradient | |
5 | 斗篷草 Lady's mantle | 超疏水叶片+亲水中心区 Hydrophilic areas on superhydrophobic surfaces | 润湿性梯度 Gradient of wettability | |
6 | 羽扇豆 Lupin | |||
7 | 大戟 Euphorbia |
Fig.3 (a - c) Young model, Wenzel model and Cassie model;(d, e) The movement trend of droplet on horizontal surface and inclined surface;(f) The movement trend of droplet on surface with wettability gradient[59];(g, h) Mechanism of water drop motion on conical surface with different wettability[60];(i) The movement trend of droplet on conical surface with roughness gradient[21]
Fig.4 (a) Photos of particles trapped against the cylinders[77];(b) Directionally pumping droplets by capillary force on slippery surface with oil meniscus[78];(c) The photos of the ramee[81];(d) The photos of lotus leaves[83];(e, f) The droplet penetration through a microcylinder membrane with a wettability gradient[85];(g) Mechanism of unidirectional water penetration on a Janus film [86]
Fig.5 (a) Schematic diagram of 3D-printed cactus-mimetic spine arrays[95];(b, c) The fog collection process of the cactus-inspired device[96];(d) The directional water droplet transport under the cone utilizing vibration and the Laplace force gradient [97]
Fig.6 (a) The water contact angle and oil contact angle in water[98];(b) The weight of water harvested at different inclined angles[98];(c) The weight of water harvested under 30 cycles[98];(d. f) Amount of water harvested by various superwetting sample surfaces[99];(e) Optical photographs of the fog harvesting progress[99];(g) Schematic illustration of the self-induced removal mechanism of water droplets on different samples[103]
Fig.7 (a, b) Illustration of the water-collecting process and mechanism of bioinspired 3D network[106];(c, d) Optical image of pitaya and the schematic diagram of the 3D fog collector[107];(e, f) Images of the harvesting progress and the water weight of different samples[108]
Fig.8 (a) Illustration of fog collection on an artificial periodic roughness-gradient conical copper wire[92];(b) Estimation of water collection rates by water collector[92];(d, e) The mechanism of fog collection by water collector[113]
Fig.9 (a) A sketch of the alternating nanoscale (hydrophilic-hydrophobic)/hydrophilic Janus cooperative copper mesh[114];(b) Unidirectional water transport and fog collection on Janus copper mesh[114];(c) A sketch of 3D fog collector[114];(d) The amount of water harvested by 2D flat-like fog harvesting (curve A) and by JM-style fog harvesting (curve B)[114];(e-g) The fog harvesting procedure and the amount of collected water of different samples[116]
Fig.10 (a) Schemes of the multi-bioinspired slippery surfaces with hollow bump arrays[117];(b, c) The amount of collected water and the proportion of water collected relative to the water sprayed on the surface during the water collection cycle[117];(d - f) Design of water collector inspired by multiple creatures[118]
序号 No. | 生物仿生 Biomimetic | 制备方法 Preparation | 集水材料 Fog collector | 雾流速 Flow speed/(cm·s-1) | 雾流量 Flow rate | 温度 Temperature/℃ | 湿度 Humidity/% | 集水量 Water collection rate | 文献 Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | 仙人掌 Cactus | 3D打印法 3D printing | 疏水微锥 Hydrophobic multibranched spines | 100 | - | 室温 Room temperature | 95 | 2 mg/(min·mm3) | |
2 | 仙人掌 Cactus | 磁性粒子辅助成型法 Magnetic particle?assisted molding method | 疏水微锥阵列 +亲水棉花基底 Hydrophobic conical arrays with the hydrophilic cotton matrix | 45~50 | - | 23 | - | 3 mL/10 min | |
3 | 甲壳虫 Desert beetle | 水热法+浸涂法+后修饰法 Hydrothermal, dip?coating and post?modification method | 亲/疏水性相间 不锈钢网 Hydrophilic/hydrophobic hybrid stainless?steel mesh | 50 | 0.07 g/s | - | - | 977 mg/(h·cm2) | |
4 | 甲壳虫 Desert beetle | 喷涂法+后修饰法 Spraying method and post?modification | 亲/疏水性相间 不锈钢网 Hydrophilic/hydrophobic hybrid stainless?steel mesh | 50 | 0.07 g/s | 25 | 85~90 | 1 707.25 mg/(h·cm2) | |
5 | 甲壳虫 Desert beetle | 层层自组装沉积法 LBL self?assembly deposition method | 亲/疏水性相间铜网 Hydrophilic/hydrophobic hybrid copper mesh | 50 | 0.07 g/s | 22 | 90 | 571 mg/(h·cm2) | |
6 | 蜘蛛丝 Spider silk | 微流控法 Microfluidic method | 人造蜘蛛网 Artificial spider silk web | - | 100 g/(s·m2) | 25 | - | 600 g/h | |
7 | 蜘蛛丝 Spider silk | 水热法 Hydrothermal method | 亲水性3D纤维网 Hydrophilic 3D fiber web | 75 | - | 0 | - | 36.07 g/h | |
8 | 火龙果叶片Plant Pitaya | 化学刻蚀+后修饰法 Chemical etching and post?modification | 3D集水组合 3D water collector | 60 | 0.037 g/s | 24 | - | 8.64 g/30 min | |
9 | 猪笼草 Nepenthes | 水热法+光催化反应 Hydrothermal and photocatalysis reaction | 疏水滑移表面 Hydrophobic slippery surface | 50 | 0.07 g/s | 18 | 90 | ~1.126 g/30 min | |
10 | 猪笼草 Nepenthes | 喷涂法 Spraying method | 疏水滑移表面 Hydrophobic slippery surface | 40~50 | 0.07 g/s | 18±2 | 85 | ~460.5 mg/(h·cm2) | |
11 | 甲壳虫+Janus 浸润性 Desert beetle and Janus wettability | 液相修饰法 Liquidus modification | 亲水/疏水性相间+Janus浸润性铜网 (Hydrophilic?hydrophobic)/hydrophilic Janus cooperative copper mesh | 50 | 0.07 g/s | 18 | 90 | 2.2 g/(h·cm2) | |
12 | 甲壳虫+Janus浸润性 Desert beetle and Janus wettability | 水热法+光催化法 Hydrothermal and photocatalysis reaction | 亲水/疏水性相间+Janus浸润性泡沫铜 (Hydrophilic?hydrophobic)/hydrophilic Janus cooperative copper foam | 25 | ~0.056 g/s | 25 | 70 | 2.39 g/h | |
13 | 仙人掌+甲壳虫+猪笼草 Cactus, desert beetle and Nepentes | 化学刻蚀+电沉积法 Chemical etching and electrochemical?deposition | 亲水/疏水性相间锥形铜针+亲水滑移表面 Conical copper needles with gradient wettability and hydrophilic slippery surface | 25 | ~0.056 g/s | 15 | 70 | 8.83 g/h |
Table 2 The research progress of materials for water collection
序号 No. | 生物仿生 Biomimetic | 制备方法 Preparation | 集水材料 Fog collector | 雾流速 Flow speed/(cm·s-1) | 雾流量 Flow rate | 温度 Temperature/℃ | 湿度 Humidity/% | 集水量 Water collection rate | 文献 Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | 仙人掌 Cactus | 3D打印法 3D printing | 疏水微锥 Hydrophobic multibranched spines | 100 | - | 室温 Room temperature | 95 | 2 mg/(min·mm3) | |
2 | 仙人掌 Cactus | 磁性粒子辅助成型法 Magnetic particle?assisted molding method | 疏水微锥阵列 +亲水棉花基底 Hydrophobic conical arrays with the hydrophilic cotton matrix | 45~50 | - | 23 | - | 3 mL/10 min | |
3 | 甲壳虫 Desert beetle | 水热法+浸涂法+后修饰法 Hydrothermal, dip?coating and post?modification method | 亲/疏水性相间 不锈钢网 Hydrophilic/hydrophobic hybrid stainless?steel mesh | 50 | 0.07 g/s | - | - | 977 mg/(h·cm2) | |
4 | 甲壳虫 Desert beetle | 喷涂法+后修饰法 Spraying method and post?modification | 亲/疏水性相间 不锈钢网 Hydrophilic/hydrophobic hybrid stainless?steel mesh | 50 | 0.07 g/s | 25 | 85~90 | 1 707.25 mg/(h·cm2) | |
5 | 甲壳虫 Desert beetle | 层层自组装沉积法 LBL self?assembly deposition method | 亲/疏水性相间铜网 Hydrophilic/hydrophobic hybrid copper mesh | 50 | 0.07 g/s | 22 | 90 | 571 mg/(h·cm2) | |
6 | 蜘蛛丝 Spider silk | 微流控法 Microfluidic method | 人造蜘蛛网 Artificial spider silk web | - | 100 g/(s·m2) | 25 | - | 600 g/h | |
7 | 蜘蛛丝 Spider silk | 水热法 Hydrothermal method | 亲水性3D纤维网 Hydrophilic 3D fiber web | 75 | - | 0 | - | 36.07 g/h | |
8 | 火龙果叶片Plant Pitaya | 化学刻蚀+后修饰法 Chemical etching and post?modification | 3D集水组合 3D water collector | 60 | 0.037 g/s | 24 | - | 8.64 g/30 min | |
9 | 猪笼草 Nepenthes | 水热法+光催化反应 Hydrothermal and photocatalysis reaction | 疏水滑移表面 Hydrophobic slippery surface | 50 | 0.07 g/s | 18 | 90 | ~1.126 g/30 min | |
10 | 猪笼草 Nepenthes | 喷涂法 Spraying method | 疏水滑移表面 Hydrophobic slippery surface | 40~50 | 0.07 g/s | 18±2 | 85 | ~460.5 mg/(h·cm2) | |
11 | 甲壳虫+Janus 浸润性 Desert beetle and Janus wettability | 液相修饰法 Liquidus modification | 亲水/疏水性相间+Janus浸润性铜网 (Hydrophilic?hydrophobic)/hydrophilic Janus cooperative copper mesh | 50 | 0.07 g/s | 18 | 90 | 2.2 g/(h·cm2) | |
12 | 甲壳虫+Janus浸润性 Desert beetle and Janus wettability | 水热法+光催化法 Hydrothermal and photocatalysis reaction | 亲水/疏水性相间+Janus浸润性泡沫铜 (Hydrophilic?hydrophobic)/hydrophilic Janus cooperative copper foam | 25 | ~0.056 g/s | 25 | 70 | 2.39 g/h | |
13 | 仙人掌+甲壳虫+猪笼草 Cactus, desert beetle and Nepentes | 化学刻蚀+电沉积法 Chemical etching and electrochemical?deposition | 亲水/疏水性相间锥形铜针+亲水滑移表面 Conical copper needles with gradient wettability and hydrophilic slippery surface | 25 | ~0.056 g/s | 15 | 70 | 8.83 g/h |
1 | SECKLER D, BARKER R, AMARASINGHE U. Water scarcity in the twenty-first century[J]. Int J Water Resour Dev, 1999, 15(1/2): 29-42. |
2 | GILBERTSON L M, ZIMMERMAN J B, PLATA D L, et al. Designing nanomaterials to maximize performance and minimize undesirable implications guided by the principles of green chemistry[J]. Chem Soc Rev, 2015, 44(16): 5758-5777. |
3 | CARROLL H A, DAVIS M G, PAPADAKI A. Higher plain water intake is associated with lower type 2 diabetes risk: a cross-sectional study in humans[J]. Nutr Res, 2015, 35(10): 865-872. |
4 | GORJIAN S, GHOBADIAN B. Solar desalination: a sustainable solution to water crisis in iran[J]. Renewable Sustainable Energy Rev, 2015, 48: 571-584. |
5 | KLOOSTERMAN R A, van der HOEK J P, HERDER P. Resilient drinking water resources[J]. Water Resour Manage, 2021, 35(1): 337-351. |
6 | VÖRÖSMARTY C J, GREEN P, SALISBURY J, et al. Global water resources: vulnerability from climate change and population growth[J]. Science, 2000, 289(5477): 284-288. |
7 | 周威, 陈立, 杜京城,等.仿生雾水收集材料:从基础研究到性能提升策略[J]. 化工学报,2020, 71(10): 4532-4552. |
ZHOU W, CHEN L, DU J C, et al. Bio-inspired fog harvesting materials: from fundamental research to promotional strategy[J]. CIESC J, 2020, 71(10): 4532-4552. | |
8 | ZHU P, LU C X, ZHANG L, et al. Urban fresh water resources consumption of China[J]. Chin Geogra Sci, 2009, 19(3): 219-224. |
9 | GOHARI A, ESLAMIAN S, MIRCHI A, et al. Water transfer as a solution to water shortage: a fix that can backfire[J]. J Hydrol, 2013, 491: 23-39. |
10 | LUTCHMIAH K, LAUBER L, ROEST K, et al. Zwitterions as alternative draw solutions in forward osmosis for application in wastewater reclamation[J]. J Membr Sci, 2014, 460: 82-90. |
11 | CHATURVEDI N D, BANDYOPADHYAY S. Optimization of multiple freshwater resources in a flexible-schedule batch water network[J]. Ind Eng Chem Res, 2014, 53(14): 5996-6005. |
12 | ERCIN A E, HOEKSTRA A Y. Water footprint scenarios for 2050: a global analysis[J]. Environ Int, 2014, 64: 71-82. |
13 | RIDOUTT B G, PFISTER S. Reducing humanity's water footprint[J]. Environ Sci Technol, 2010, 44: 6019-6021. |
14 | MEKONNEN M M, HOEKSTRA A Y. Four billion people facing severe water scarcity[J]. Sci Adv, 2016, 2(2): e1500323. |
15 | SCHYNS J F, HOEKSTRA A Y, BOOIJ M J, et al. Limits to the world's green water resources for food, feed, fiber, timber, and bioenergy[J]. Proc Natl Acad Sci USA, 2019, 116(11): 4893-4898. |
16 | WANG L X, KASEKE K F, RAVI S, et al. Convergent vegetation fog and dew water use in the Namib Desert[J]. Ecohydrology, 2019, 12(7): e2130. |
17 | MEUNIER D, BEYSENS D. Dew, fog, drizzle and rain water in Baku (Azerbaijan)[J]. Atmos Res, 2016, 178/179: 65-72. |
18 | KOOL D, AGRA E, DRABKIN A, et al. The overlooked non-rainfall water input sibling of fog and dew: daily water vapor adsorption on a !Nara hummock in the Namib sand sea[J]. J Hydrol, 2021, 598: 126420. |
19 | PARKER A R, LAWRENCE C R J N. Water capture by a desert beetle[J]. Nature, 2001, 414(6859): 33-34. |
20 | ZHENG Y M, BAI H, HUANG Z B, et al. Directional water collection on wetted spider silk[J]. Nature, 2010, 463(7281): 640-643. |
21 | JU J, BAI H, ZHENG Y M, et al. A multi-structural and multi-functional integrated fog collection system in cactus[J]. Nat Commun, 2012, 3: 1247. |
22 | ZHONG L S, ZHU H, WU Y, et al. Understanding how surface chemistry and topography enhance fog harvesting based on the superwetting surface with patterned hemispherical bulges[J]. J Colloid Interface Sci, 2018, 525: 234-242. |
23 | CHENG Y Q, WANG M M, SUN J, et al. Rapid and persistent suction condensation on hydrophilic surfaces for high-efficiency water collection[J]. Nano Lett, 2021, 21(17): 7411-7418. |
24 | ZHOU H, JING X S, LI S P, et al. Near-bulge oil meniscus-induced migration and condensation of droplets for water collection: energy saving, generalization and recyclability[J]. Chem Eng J, 2021, 417: 129215. |
25 | BJELOBRK N, GIRARD H L, BENGALURU SUBRAMANYAM S, et al. Thermocapillary motion on lubricant-impregnated surfaces[J]. Phys Rev Fluids, 2016, 1(6): 063902. |
26 | LIU G L, KIM J, LU Y, et al. Optofluidic control using photothermal nanoparticles[J]. Nat Mater, 2006, 5(1): 27-32. |
27 | DORVEE J R, DERFUS A M, BHATIA S N, et al. Manipulation of liquid droplets using amphiphilic, magnetic one-dimensional photonic crystal chaperones[J]. Nat Mater, 2004, 3(12): 896-899. |
28 | LI N, WU L, YU C L, et al. Ballistic jumping drops on superhydrophobic surfaces via electrostatic manipulation[J]. Adv Mater, 2018, 30(8): 1703838. |
29 | DAI H Y, GAO C, SUN J H, et al. Controllable high-speed electrostatic manipulation of water droplets on a superhydrophobic surface[J]. Adv Mater, 2019, 31(43): e1905449. |
30 | AN R, HUANG L L, LONG Y, et al. Liquid-solid nanofriction and interfacial wetting[J]. Langmuir, 2016, 32(3): 743-750. |
31 | DAS G, LIM K J, TANTENGCO O A G, et al. Cactus: chemical, nutraceutical composition and potential bio-pharmacological properties[J]. Phytother Res, 2021, 35(3): 1248-1283. |
32 | DUBEUX J C B, SANTOS M V F D, CUNHA M V D, et al. Cactus (opuntia and nopalea) nutritive value: a review[J]. Anim Feed Sci Technol, 2021, 275: 114890. |
33 | MITCHELL D, HENSCHEL J R, HETEM R S, et al. Fog and fauna of the Namib Desert: past and future[J]. Ecosphere, 2020, 11(1): e02996. |
34 | GOTTLIEB T R, ECKARDT F D, VENTER Z S, et al. The contribution of fog to water and nutrient supply to Arthraerua leubnitziae in the central Namib Desert, Namibia[J]. J Aric Environ, 2019, 161: 35-46. |
35 | NøRGAARD T, DACKE M. Fog-basking behaviour and water collection efficiency in Namib Desert Darkling Beetles[J]. Front Zool, 2010, 7(1): 1-8. |
36 | BECKER N, OROUDJEV E, MUTZ S, et al. Molecular nanosprings in spider capture-silk threads[J]. Nat Mater, 2003, 2(4): 278-283. |
37 | PETERS H M. The spinning apparatus of Uloboridae in relation to the structure and construction of capture threads (Arachnida, Araneida)[J]. Zoomorphology, 1984, 104(2): 96-104. |
38 | EDMONDS D T, VOLLRATH F. The contribution of atmospheric water vapour to the formation and efficiency of a spider's capture web[J]. Proc R Lond B, 1992, 248(1322): 145-148. |
39 | VOLLRATH F, FAIRBROTHER W J, WILLIAMS R J, et al. Compounds in the droplets of the orb spider's viscid spiral[J]. Nature, 1990, 345(6275): 526-528. |
40 | PORTER D, VOLLRATH F. Nanoscale toughness of spider silk[J]. Nano Today, 2007, 2(3): 6. |
41 | EMILE O, LE FLOCH A, VOLLRATH F. Shape memory in spider draglines[J]. Nature, 2006, 440(7084): 621. |
42 | LIU Y, SHAO Z Z, VOLLRATH F. Relationships between supercontraction and mechanical properties of spider silk[J]. Nat Mater, 2005, 4(12): 901-905. |
43 | VOLLRATH F. Strength and structure of spiders' silks[J]. Rev Mol Biotechnol, 2000, 74(2): 67-83. |
44 | ANDREWS H G, ECCLES E A, SCHOFIELD W C E, et al. Three-dimensional hierarchical structures for fog harvesting[J]. Langmuir, 2011, 27(7): 3798-3802. |
45 | PAN Z, PITT W G, ZHANG Y M, et al. The upside-down water collection system of Syntrichia caninervis[J]. Nat Plants, 2016, 2: 16076. |
46 | SHIRTCLIFFE N J, MCHALE G, NEWTON M I. Learning from superhydrophobic plants: the use of hydrophilic areas on superhydrophobic surfaces for droplet control[J]. Langmuir, 2009, 25(24): 14121-14128. |
47 | YOUNG T. III. An essay on the cohesion of fluids[J]. Philos Trans R Soc London, 1805, (95): 65-87. |
48 | WENZEL R N . Resistance of solid surfaces to wetting by water[J]. Ind Eng Chem, 1936, 28(8): 988-994. |
49 | VOGLER E A. Structure and reactivity of water at biomaterial surfaces[J]. Adv Colloid Interface Sci, 1998, 74(1/2/3): 69-117. |
50 | TIAN Y, JIANG L. Wetting: intrinsically robust hydrophobicity[J]. Nat Mater, 2013, 12(4): 291-292. |
51 | CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Trans Faraday Soc, 1944, 40: 546-551. |
52 | LIU X L, CHENG P. Dropwise condensation theory revisited Part II. droplet nucleation density and condensation heat flux[J]. Int J Heat Mass Transfer, 2015, 83: 842-849. |
53 | DAI X M, SUN N, NIELSEN S O, et al. Hydrophilic directional slippery rough surfaces for water harvesting[J]. Sci Adv, 2018, 4(3): eaaq0919. |
54 | 詹晓力, 金碧玉, 张庆华, 等. 多功能超润湿材料的设计制备与应用[J]. 化学进展, 2018 , 30(1): 87-100. |
ZHAN X L, JIN B Y, ZHANG Q H, et al. Design and applications of multifunctional super-wetting materials[J]. Prog Chem, 2018, 30(1): 87-100. | |
55 | NEUMANN A W, GOOD R. Thermodynamics of contact angles. I. heterogeneous solid surfaces[J]. J Colloid Interface Sci, 1972, 38(2): 341-358. |
56 | BARTELL F E, SHEPARD J W. Surface roughness as related to hysteresis of contact angles. II. the systems paraffin-3 molar calcium chloride solution-air and paraffin-glycerol-air[J]. J Phys Chem, 1953, 57(4): 455-458. |
57 | FOWKES F M. Attractive forces at interfaces[J]. Ind Eng Chem, 1964, 56(12): 40-52. |
58 | TIMMONS C O, ZISMAN W A. The effect of liquid structure on contact angle hysteresis[J]. J Colloid Interface Sci, 1966, 22(2): 165-171. |
59 | ZHOU H, JING X S, GUO Z G. Optimal design of a fog collector: unidirectional water transport on a system integrated by conical copper needles with gradient wettability and hydrophilic slippery rough surfaces[J]. Langmuir, 2020, 36(24): 6801-6810. |
60 | JU J, XIAO K, YAO X, et al. Bioinspired conical copper wire with gradient wettability for continuous and efficient fog collection[J]. Adv Mater, 2013, 25(41): 5937-5942. |
61 | LORENCEAU E, QUÉRÉ D. Drops on a conical wire[J]. J Fluid Mech, 2004, 510: 29-45. |
62 | BICO J, QUÉRÉ D. Self-propelling slugs[J]. J Fluid Mech, 2002, 467: 101-127. |
63 | CHEN W, GUO Z G. Hierarchical fibers for water collection inspired by spider silk[J]. Nanoscale, 2019, 11(33): 15448-15463. |
64 | CHAUDHURY M K, WHITESIDES G M. How to make water run uphill[J]. Science, 1992, 256(5063): 1539-1541. |
65 | STYLE R W, CHE Y L, PARK S J, et al. Patterning droplets with durotaxis[J]. Proc Natl Acad Sci USA, 2013, 110(31): 12541-12544. |
66 | GURERA D, BHUSHAN B. Optimization of bioinspired conical surfaces for water collection from fog[J]. J Colloid Interface Sci, 2019, 551: 26-38. |
67 | CHEN H W, ZHANG P F, ZHANG L W, et al. Continuous directional water transport on the peristome surface of Nepenthes alata[J]. Nature, 2016, 532(7597): 85-89. |
68 | MALVADKAR N A, HANCOCK M J, SEKEROGLU K, et al. An engineered anisotropic nanofilm with unidirectional wetting properties[J]. Nat Mater, 2010, 9(12): 1023-1028. |
69 | 丁雅玉, 苏亚辉, 陈亮. 纳秒激光加工(超)疏水/(超)亲水铝膜的润湿性和雾水收集实验研究[J]. 激光与光电子学进展, 2020, 57(11): 111412. |
DING Y Y, SU Y H, CHEN L. Experimental investigating wettability and fog collection characteristics of (super)hydrophobic/(super)hydrophilic aluminum membranes processed by nanosecond laser[J]. Laser Optoelectron Prog, 2020, 57(11): 111412. | |
70 | PRAKASH M, QUERE D, BUSH J W M. Surface tension transport of prey by feeding shorebirds: the capillary ratchet[J]. Science, 2008, 320(5878): 931-934. |
71 | WANG Q B, YAO X, LIU H, et al. Self-removal of condensed water on the legs of water striders[J]. Proc Natl Acad Sci USA, 2015, 112(30): 9247-9252. |
72 | CHO H J, PRESTON D J, ZHU Y Y, et al. Nanoengineered materials for liquid-vapour phase-change heat transfer[J]. Nat Rev Mater, 2016, 2(2): 1-17. |
73 | GOU X L, GUO Z G. Facile fabrication of slippery lubricant-infused CuO-coated surfaces with different morphologies for efficient water collection and excellent slippery stability[J]. Langmuir, 2020, 36(30): 8983-8992. |
74 | LIU J, GUO H Y, ZHANG B, et al. Guided self-propelled leaping of droplets on a micro-anisotropic superhydrophobic surface[J]. Angew Chem Int Ed Engl, 2016, 55(13): 4265-4269. |
75 | BOREYKO J B, CHEN C H. Self-propelled dropwise condensate on superhydrophobic surfaces[J]. Phys Rev Lett, 2009, 103(18): 184501. |
76 | PERUZZO P, DEFINA A, NEPF H M, et al. Capillary interception of floating particles by surface-piercing vegetation[J]. Phys Rev Lett, 2013, 111(16): 164501. |
77 | PERUZZO P, DEFINA A, NEPF H. Capillary trapping of buoyant particles within regions of emergent vegetation[J]. Water Resour Res, 2012, 48(7): W07512. |
78 | JIANG J K, GAO J, ZHANG H D, et al. Directional pumping of water and oil microdroplets on slippery surface[J]. Proc Natl Acad Sci USA, 2019, 116(7): 2482-2487. |
79 | CAVALLARO M, BOTTO L, LEWANDOWSKI E P, et al. Curvature-driven capillary migration and assembly of rod-like particles[J]. Proc Natl Acad Sci USA, 2011, 108(52): 20923-20928. |
80 | PAUNOV V N, KRALCHEVSKY P A, DENKOV N D, et al. Lateral capillary forces between floating submillimeter particles[J]. J Colloid Interface Sci, 1993, 157(1): 100-112. |
81 | GUO Z G, LIU W M. Biomimic from the superhydrophobic plant leaves in nature: binary structure and unitary structure[J]. Plant Sci, 2007, 172(6): 1103-1112. |
82 | BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8. |
83 | CHENG Q F, LI M Z, ZHENG Y M, et al. Janus interface materials: superhydrophobic air/solid interface and superoleophobic water/solid interface inspired by a lotus leaf[J]. Soft Matter, 2011, 7(13): 5948-5951. |
84 | YANG H C, HOU J W, CHEN V, et al. Janus membranes: exploring duality for advanced separation[J]. Angew Chem Int Ed Engl, 2016, 55(43): 13398-13407. |
85 | TIAN X L, LI J, WANG X. Anisotropic liquid penetration arising from a cross-sectional wettability gradient[J]. Soft Matter, 2012, 8(9):2633-2637. |
86 | WU J, WANG N, WANG L, et al. Unidirectional water-penetration composite fibrous film via electrospinning[J]. Soft Matter, 2012, 8(22): 5996-5999. |
87 | DONG Y, LI J, PEDERSEN-BJERGAARD S, et al. Unidirectional solute transfer using a Janus membrane[J]. J Membr Sci, 2020, 596:117723. |
88 | CAO M Y, LI K, DONG Z C, et al. Superhydrophobic “pump”: continuous and spontaneous antigravity water delivery[J]. Adv Funct Mater, 2015, 25(26): 4114-4119. |
89 | ZHOU H, WANG H X, NIU H T, et al. Superphobicity/philicity Janus fabrics with switchable, spontaneous, directional transport ability to water and oil fluids[J]. Sci Rep, 2013, 3: 2964. |
90 | CAO H J, GU W H, FU J Y, et al. Preparation of superhydrophobic/oleophilic copper mesh for oil-water separation[J]. Appl Surf Sci, 2017, 412: 599-605. |
91 | 李锐, 王立达, 孙文, 等. 超疏水不锈钢网的制备及其雾水收集性能研究[J]. 现代化工, 2020, 40(11): 92-97. |
LI R, WANG L D, SUN W, et al. Preparation of superhydrophobic stainless steel mesh and study on its performance of fog water collection[J]. Mod Chem Ind, 2020, 40(11): 92-97. | |
92 | XU T, LIN Y C, ZHANG M X, et al. High-efficiency fog collector: water unidirectional transport on heterogeneous rough conical wires[J]. ACS Nano, 2016, 10(12): 10681-10688. |
93 | SONG Y Y, LIU Y, JIANG H B, et al. Temperature-tunable wettability on a bioinspired structured graphene surface for fog collection and unidirectional transport[J]. Nanoscale, 2018, 10(8): 3813-3822. |
94 | LI D K, FAN Y F, HAN G C, et al. Multibioinspired Janus membranes with superwettable performance for unidirectional transportation and fog collection[J]. Chem Eng J, 2021, 404: 126515. |
95 | LI X J, YANG Y, LIU L Y, et al. 3D-printed cactus-inspired spine structures for highly efficient water collection[J]. Adv Mater Interfaces, 2019, 7(3): 1901752. |
96 | CAO M Y, JU J, LI K, et al. Facile and large-scale fabrication of a cactus-inspired continuous fog collector[J]. Adv Funct Mater, 2014, 24(21): 3235-3240. |
97 | PENG Y, HE Y X, YANG S, et al. Magnetically induced fog harvesting via flexible conical arrays[J]. Adv Funct Mater, 2015, 25(37): 5967-5971. |
98 | ZHANG Y, ZHONG L S, GUO Z G. A hybrid stainless-steel mesh with nano-array structure applied for efficient fog harvesting by tuning wetting[J]. Chem Lett, 2020, 49(1): 79-82. |
99 | FENG J, ZHONG L S, GUO Z G. Sprayed hieratical biomimetic superhydrophilic-superhydrophobic surface for efficient fog harvestin [J]. Chem Eng J, 2020, 388: 124283. |
100 | ZHU H, GUO Z G. Hybrid engineered materials with high water-collecting efficiency inspired by Namib Desert beetles[J]. Chem Commun, 2016, 52(41): 6809-6812. |
101 | WANG B, ZHANG Y B, LIANG W X, et al. A simple route to transform normal hydrophilic cloth into a superhydrophobic-superhydrophilic hybrid surface[J]. J Mater Chem A, 2014, 2(21): 7845-7852. |
102 | ISHII D, SHIMOMURA M. Invisible gates for moving water droplets: adhesive force gradients on a biomimetic superhydrophobic surface[J]. Chem Mater, 2013, 25(3): 509-513. |
103 | GOU X L, GUO Z G. Hybrid hydrophilic-hydrophobic CuO@TiO2-coated copper mesh for efficient water harvesting[J]. Langmuir, 2020, 36(1): 64-73. |
104 | LIU Y F, YANG N, LI X, et al. Water harvesting of bioinspired microfibers with rough spindle-knots from microfluidics[J]. Small, 2020, 16(9): 1901819. |
105 | TIAN Y, ZHU P A, TANG X, et al. Large-scale water collection of bioinspired cavity-microfibers[J]. Nat Commun, 2017, 8(1):1-9. |
106 | LI C, LIU Y F, GAO C L, et al. Fog harvesting of a bioinspired nanocone-decorated 3D fiber network[J]. ACS Appl Mater Interfaces, 2019, 11(4): 4507-4513. |
107 | ZHONG L S, ZHANG R C, LI J, et al. Efficient fog harvesting based on 1D copper wire inspired by the plant pitaya[J]. Langmuir, 2018, 34(50): 15259-15267. |
108 | JING X S, GUO Z G. Durable lubricant-impregnated surfaces for water collection under extremely severe working conditions[J]. ACS Appl Mater Interfaces, 2019, 11(39): 35949-35958. |
109 | FAN H F, GUO Z G. WO3-based slippery coatings with long-term stability for efficient fog harvesting[J]. J Colloid Interface Sci, 2021, 591: 418-428. |
110 | BAI H, WANG L, JU J, et al. Efficient water collection on integrative bioinspired surfaces with star-shaped wettability patterns[J]. Adv Mater, 2014, 26(29): 5025-5030. |
111 | SEO D, LEE J, LEE C, et al. The effects of surface wettability on the fog and dew moisture harvesting performance on tubular surfaces[J]. Sci Rep, 2016, 6: 24276. |
112 | SEO D, LEE C, NAM Y. Influence of geometric patterns of microstructured superhydrophobic surfaces on water-harvesting performance via dewing[J]. Langmuir, 2014, 30(51): 15468-15476. |
113 | ZHOU H, ZHANG M X, LI C, et al. Excellent fog-droplets collector via integrative janus membrane and conical spine with micro/nanostructures[J]. Small, 2018, 14(27): 1801335. |
114 | ZHONG L S, FENG J, GUO Z G. An alternating nanoscale (hydrophilic⁃hydrophobic)/hydrophilic Janus cooperative copper mesh fabricated by a simple liquidus modification for efficient fog harvesting[J]. J Mater Chem A, 2019, 7(14): 8405-8413. |
115 | ZHOU H, JING X S, GUO Z G. Excellent fog droplets collector via an extremely stable hybrid hydrophobic-hydrophilic surface and Janus copper foam integrative system with hierarchical micro/nanostructures[J]. J Colloid Interface Sci, 2020, 561: 730-740. |
116 | GOU X L, GUO Z G. Reed leaf-inspired anisotropic slippery lubricant-infused surface for water collection and bubble transportation[J]. Chem Eng J, 2021, 411: 128495. |
117 | ZHANG X X, SUN L Y, WANG Y, et al. Multibioinspired slippery surfaces with wettable bump arrays for droplets pumping[J]. Proc Natl Acad Sci USA, 2019, 116(42): 20863-20868. |
118 | PARK K C, KIM P, GRINTHAL A, et al. Condensation on slippery asymmetric bumps[J]. Nature, 2016, 531(7592): 78-82. |
119 | ZHONG L S, ZHU L M, LI J H, et al. Recent advances of biomimetic fog harvesting: focusing on higher efficiency and large-scale fabrication[J]. Mol Syst Des Eng, 2021. DOI: 10.10391D1ME00019E. |
[1] | GAO Chun-Lei, ZHENG Yong-Mei . Control of Droplet Dynamic Behavior at Bioinspired Multi⁃micro/nano Gradient Interface [J]. Chinese Journal of Applied Chemistry, 2022, 39(1): 110-130. |
[2] | Sheng-Nan LI, Jun FU. Biomimetic Flexible Hydrogel Electronics [J]. Chinese Journal of Applied Chemistry, 2022, 39(1): 55-73. |
[3] | LI Chun, YU Yan-Hao. Research Progress on Mechanism and Application of Biomimetic Mineralization [J]. Chinese Journal of Applied Chemistry, 2022, 39(1): 74-85. |
[4] | HUAI Meng-Jiao, LIU Tao-Xue-Ting, JIANG Zhong-Yi. Research Progress of Artificial Water Channels Inspired by Aquaporin [J]. Chinese Journal of Applied Chemistry, 2022, 39(1): 99-109. |
[5] | XU Kerui, ZHONG Zhiming, XU Huidong, WANG Xuan, ZHAO Min, WU Chuande. Highly Efficient Aerobic Oxidation of Arylalkanes with a Biomimetic Catalyst Platform [J]. Chinese Journal of Applied Chemistry, 2017, 34(9): 1079-1085. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||