Chinese Journal of Applied Chemistry ›› 2021, Vol. 38 ›› Issue (8): 881-896.DOI: 10.19894/j.issn.1000-0518.200369
• Review • Previous Articles Next Articles
WU Zhi-Qiang1*, HAN Xin-Ning1, LIU Yang1, WANG Gang2, ZHAN Hai-Juan2, LIU Wan-Yi2*
Received:
2020-12-09
Revised:
2021-03-15
Published:
2021-08-01
Online:
2021-10-01
Supported by:
CLC Number:
WU Zhi-Qiang, HAN Xin-Ning, LIU Yang, WANG Gang, ZHAN Hai-Juan, LIU Wan-Yi. Research Progress on Synthesis of Bis(indolyl)methanes under Aqueous or Solvent-free Catalysis[J]. Chinese Journal of Applied Chemistry, 2021, 38(8): 881-896.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.200369
[1] ANIRBAN S, SOUGATA S, SHRISHNU K K, et al. A decade update on solvent and catalyst-free organic neat reactions: a step forward towards sustainability[J]. Green Chem, 2016, 18(16): 4475-4525. [2] JULIE B Z, PAULl T A, HANNO C E, et al. Designing for a green chemistry future[J]. Science, 2020, 367: 397-400. [3] WANG G, WU Z Q, LIU W Y, et al. Exploring the coordination confinement effect of divalent palladium/zero palladium doped polyaniline-networking: as an excellent-performance nanocomposite catalyst for C—C coupling reactions[J]. J Catal, 2020, 384: 177-188. [4] ANITA I, ANA D, ANITA M B, et al. Review of 12 principles of green chemistry in practice[J]. Int J Sustainable Green Energy, 2017, 6(3): 39-48. [5] KOBAYASHI S, MANABE K. Green Lewis acid catalysis in organic synthesis[J]. Pure Appl Chem, 2000, 72(7): 1373-1380. [6] ROGER A S. Green solvents for sustainable organic synthesis: state of the art[J]. Green Chem, 2005, 7: 267-278. [7] WU Z Q, WANG G, LIU W Y, et al. Synthesis of bis(indolyl)methanes under dry grinding conditions, promoted by a Lewis acid- surfactant-SiO2-combined nanocatalyst[J]. Green Chem, 2019, 21: 3542-3546. [8] MANABE K, MORI Y, KOBAYASHI S. Organic synthesis inside particles in water: Lewis acid-surfactant-combined catalysts for organic reactions in water using colloidal dispersions as reaction media[J]. J Am Chem Soc, 2000, 122: 7202-7207. [9] VJEKOSLAV , MARINA D I, LASZLO F, et al. A model for a solvent-free synthetic organic research laboratory: click-mechanosynthesis and structural characterization of thioureas without bulk solvents[J]. Green Chem, 2012, 14: 2462-2473. [10] LI C J, CHEN L. Organic chemistry in water[J]. Chem Soc Rev, 2006, 35: 68-82. [11] SCOTT A I. Biogenetic-type synthesis of the lndole alkaloids[J]. Bioorg Chem, 1974, 3: 398-429. [12] LAURA H F, ELISA B D K J, LYDIA P, et al. Indole alkaloids from the tunicate aplidium meridianum[J]. J Nat Prod, 1998, 61: 1130-1132. [13] KAM T S, SUBRAMANIAM D, SIRE K M, et al. Reversal of multidrug resistance (MDR) by aspidofractinine-type indole alkaloids[J]. Bioorg Med Chem Lett, 1998, 8: 2769-2772. [14] LI Z, LUO M Y, CAI B, et al. Design, synthesis and biological evaluation of matrine derivatives as potential anticancer agents[J]. Bioorg Med Chem Lett, 2018, 28(4): 677-683. [15] KITAJIMA M, IWAI M, HANAJIRI R K, et al. Discovery of indole alkaloids with cannabinoid CB1 receptor antagonistic activity[J]. Bioorg Med Chem Lett, 2011, 21: 1962-1964. [16] VENKATARAMANA R P, HRIDHAY M, NIKHIL K, et al. Synthesis and investigations into the anticancer and antibacterial activity studies of β-carboline chalcones and their bromide salts[J]. Bioorg Med Chem Lett, 2018, 28(8): 1278-1282. [17] KAUR G, THAKUR S, KAUNDAL P, et al. p-Dodecylbenzenesulfonic acid: an efficient Brønsted acid-surfactant-combined catalyst to carry out diverse organic transformations in aqueous medium[J]. Chem Select, 2018, 3: 12918-12936. [18] JAMES K P, CHARLES W B, JOE D R, et al. Indole alkaloids from balansia epichloe[J]. J Agric Food Chem, 1977, 25(1): 88-93. [19] QURSESHI A A, KAMAL A. Syntheses of some substituted di-indolylmethanes in aqueous medium at room temperature[J]. Tetrahedron, 1963, 19: 513-520. [20] MUTHUKUMAR A, RAO G N, SEKAR G. Zn(OTf)2-catalyzed access to symmetrical and unsymmetrical bisindoles from α-keto amides[J]. Org Biomol Chem, 2019, 17: 3921-3933. [21] 孙大召, 姜国芳, 谢宗波, 等. 二吲哚甲烷及其衍生物的合成研究进展[J]. 精细石油化工, 2015, 32(5): 78-84. SUN D Z, JIANG G F, XIE Z B, et al. Progress in the synthesis of bis(indolyl)methane and its derivatives[J]. Speciality Petrochem, 2015, 32(5): 78-84. [22] 宫海伟, 解正峰. 合成双吲哚甲烷类衍生物的研究进展[J]. 有机化学, 2012, 32(7): 1195-1207. GONG H W, XIE Z F. Research progress of synthesis of bis(indolyl)methanes[J]. Chinese J Org Chem, 2012, 32(7): 1195-1207. [23] TAN D, FRISCIC T. Mechanochemistry for organic chemists: an update[J]. J Org Chem, 2018, 2018(1): 18-33. [24] JOSHI R S, MANDHANE P G, DIWAKAR S D, et al. Ultrasound assisted green synthesis of bis(indol-3-yl)methanes catalyzed by 1-hexenesulphonic acid sodium salt[J]. Ultrason Sonochem, 2010, 17: 298-300. [25] VAGHEI G R, VEISI H, KEYPOUR H, et al. A practical and efficient synthesis of bis(indolyl)methanes in water, and synthesis of di-, tri-, and tetra(bis-indolyl)methanes under thermal conditions catalyzed by oxalic acid dehydrate[J]. Mol Divers, 2010, 14: 87-96. [26] KOLVARI E, ZOLFIGOL M A, BANARY H. Surfactant-assisted synthesis of bis(indolyl)methanes in water[J]. Chinese Chem Lett, 2011, 22: 1305-1308. [27] HASANINEJAD A, SHEKOUHY M, ZARE A, et al. PEG-SO3H as a new, highly efficient and homogeneous polymeric catalyst for the synthesis of bis(indolyl)methanes and 4,4 -(arylmethylene)-bis(3-methyl-1-phenyl-1hpyrazol-5-ol)s in water[J]. J Iran Chem Soc, 2011, 8(2): 411-423. [28] AZIZI N, GHOLIBEGHLO E, MANOCHERI Z. Green procedure for the synthesis of bis(indolyl)methanes in water[J]. Sci Iran, 2012, 19(3): 574-578. [29] ZARE L, NIKPASSAND M. Evaluation of nano-Fe3O4 as a green catalyst for the synthesis of mono, bis and tris diindolyl methanes[J]. E-J Chem, 2012, 9(3): 1623-163. [30] VAHDAT S M, KHAKSAR S, BAGHERY S. Cerium(IV) triflate as a catalyst for efficient and green synthesis of bis(indolyl) methanes in water[J]. World Appl Sci J, 2012, 19(7): 1003-1008. [31] KUMAR K S, REDDY C B, KRISHNA B S, et al. Micelle promoted synthesis of bis-(indolyl)methanes[J]. Lett Org Chem, 2012, 9: 294-299. [32] SHI X L, LIN H K, LI P Y, et al. Friedel-crafts alkylation of indoles exclusively in water catalyzed by ionic liquid supported on a polyacrylonitrile fiber: a simple “release and catch” catalyst[J]. ChemCatChem, 2014, 6: 2947-2953. [33] VEISI H, MALEKI B, ESHBALA F H, et al. In situ generation of iron(III) dodecyl sulfate as Lewis acid-surfactant catalyst for synthesis of bisindolyl, tris-indolyl, di(bis-indolyl),tri(bis-indolyl), tetra(bis-indolyl)methanes and 3-alkylated indole compounds in water[J]. RSC Adv, 2014, 4: 30683-30688. [34] GANESAN A, KOTHANDAPANI J, NANUBOLU J B, et al. Oleic acid: a benign Brønsted acidic catalyst for densely substituted indole derivative synthesis[J]. RSC Adv, 2015, 5: 28597-28600. [35] WANG Y H, SANG R, ZHENG Y, et al. Graphene oxide: an efficient recyclable solid acid for the synthesis of bis(indolyl)methanes from aldehydes and indoles in water[J]. Catal Commun, 2017, 89: 138-142. [36] KASAR S B, THOPATE S R. Synthesis of bis(indolyl)methanes using naturally occurring, biodegradable itaconic acid as a green and reusable catalyst[J]. Curr Org Synth, 2018, 15: 110-115. [37] MADHU B, VENKATA R R C. One-Pot, Step-Wise, Alternative syntheses of quinoline-substituted bis(indolyl)methanes using a green approach[J]. J Heterocyc Chem, 2017, 54(6): 3093-3098. [38] NASREEN A, VARALA R, RAO K S. A green protocol for the synthesis of bis(indolyl)methanes catalyzed by succinic acid under microwave irradiation[J]. Org Commun, 2017, 10(2): 104-113. [39] SHAIKH S I, ZAHEER Z, MOKALE S N. A simple and efficient supramolecular chemistry approach for synthesis of bis(indolyl)methanes using aqueous β-cyclodextrin as green promoter host[J]. Org Chem, 2018, 15: 32-38. [40] SADAPHAL S A, KATEGAONKAR A H, LABADE V B, et al. Synthesis of bis(indolyl) methanes using aluminium oxide (acidic) in dry media[J]. Chinese Chem Lett, 2010, 21: 39-42. [41] PRAVEEN C, DHEENKUMAR P, MURALIDHARAN D, et al. Synthesis, antimicrobial and antioxidant evaluation of quinolines and bis(indolyl)methanes[J]. Bioorg Med Chem Lett, 2010, 20: 7292-7296. [42] SHIRINI F, LANGROODI M S, ABEDINI M. Efficient synthesis of bis(indolyl)methanes catalyzed by (PhCH2PPh3)+Br-3 under solvent-free conditions[J]. Chinese Chem Lett, 2010, 21: 1342-1345. [43] TAYEBEE R, NEHZAT F, SERESHT E R, et al. An efficient and green synthetic protocol for the preparation of bis(indolyl)methanes catalyzed by H6P2W18O62·24H2O, with emphasis on the catalytic proficiency of Wells-Dawson versus Keggin heteropolyacids[J]. J Mol Catal A-Chem, 2011, 351: 154-164. [44] BORSE A U, PATIL M N, PATIL N L. Expeditious, mild and solvent free synthesis of bis(indolyl)methanes, using a mixture of phosphorus pentoxide in methanesulfonic acid[J]. E-J Chem, 2012, 9(3): 1313-1319. [45] DHUMASKAR K L, TILVE S G. Synthesis of bis(indolyl)methanes under catalyst-free and solvent-free conditions[J]. Green Chem Lett Rev, 2012, 5(3): 353-402. [46] ZARE A, BAHRAMI F, MERAJODDIN M, et al. Efficient preparation of sulfonylimines, imidazoles and bis(indolyl)methanes catalyzed by [Et3NSO3H]Cl[J]. Org Prep Proced Int, 2013, 45: 211-219. [47] REKHA M, MANJUNATH H R, NAGARAJU N. Mn/Al2O3 and Mn/ZrO2 as selective catalysts for the synthesis of bis(indolyl)methanes: the role of surface acidity and particle morphology[J]. J Ind Eng Chem, 2013, 19: 337-346. [48] BANOTHU J, GALI R, VELPULA R, et al. An eco-friendly improved protocol for the synthesis of bis(3-indolyl)methanes using poly(4-vinylpyridinium)hydrogen sulfate as efficient, heterogeneous, and recyclable solid acid catalyst[J]. ISRN Org Chem, 2013, 2013: 616932. [49] CHEN G C, GUO C Y, QIAO H B, et al. Well-dispersed sulfated zirconia nanoparticles as high-efficiency catalysts for the synthesis of bis(indolyl)methanes and biodiesel[J]. Catal Commun, 2013, 41: 70-74. [50] HOJATI S F, ZEINALI T, NEMATDOUST Z. A novel method for synthesis of bis(indolyl)methanes using 1,3-dibromo-5,5-dimethylhydantoin as a highly efficient catalyst under solvent-free conditions[J]. B Korean Chem Soc, 2013, 34: 117-120. [51] SINGH N G, KATHING C, RANI J W S, et al. Synthesis of pharmacologically active bis(indolyl) and tris(indolyl) derivatives using chlorotrimethy[J]. J Chinese Chem Soc, 2014, 61: 442-446. [52] 刘雄伟, 潘博文, 郭丰敏, 等. 双吲哚烷基类化合物在无催化剂和无溶剂条件下的高效合成[J]. 应用化学, 2014, 31(7): 778-781. LIU X W, PAN B W, GUO F M, et al. Efficient synthesis of bis(indolyl) methanes under solvent-free and catalyst-free conditions[J]. Chinese J Appl Chem, 2014, 31(7): 778-781. [53] KUNDU A, GANGULY A, DHARA K, et al. An efficient solvent-free synthesis of bis(indolyl)methane-based naked eye chemosensor for Cu2+ ion from β-chloro-α,β-unsaturated aldehydes using PMA-Cellulose as solid phase reusable catalyst[J]. RSC Adv, 2015, 5(66): 53220-53229. [54] RAVI K, KRISHNAKUMAR B, SWAMINATHAN M. Efficient, rapid, and solvent-free synthesis of substituted bis(indolyl)methanes using sulfated anatase titania as a solid acid catalyst[J]. Synth React Inorg M, 2015, 45: 1380-1386. [55] SHIRINI F, SHOJAEI A F, SAMAVI L, et al. A clean synthesis of bis(indolyl)methane and biscoumarin derivatives using P4VPy-CuO nanoparticles as a new, efficient and heterogeneous polymeric catalyst[J]. RSC Adv, 2016, 6: 48469-48478. [56] KHATAB T K, ABDELGHANY A M, SOLIMAN H A. V2O5/SiO2 as a heterogeneous catalyst in the synthesis of bis(indolyl) methanes under solvent free condition[J]. Silicon, 2017, 10: 703-708. [57] MHALDAR S N, MANDREKAR K S, GAWDE M K, et al. Solventless mechanosynthesis of bis(indolyl)methanes[J]. Synth Commun, 2019, 49(1): 1-8. [58] PHUONG H T, XUAN-TRANG T N, DUY-KHIEM N C. A Brønsted-acidic ionic liquid gel as an efficient and recyclable heterogeneous catalyst for the synthesis of bis(indolyl)methanes under solvent-free sonication[J]. Asian J Org Chem, 2018, 7: 232-239. [59] LIANG Y P, WANG G, WU Z Q, et al. “Inorganic polymer flocculation catalyst”-polyaluminum chloride as highly efficient and green catalyst for the Friedel-Crafts alkylation of bis(indolyl)methanes[J]. Catal Commun, 2020, 147: 106136. [60] CARVALHO R B, JOSHI S V. Solvent and catalyst free synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones by twin screw extrusion[J]. Green Chem, 2019, 21: 1921-1924. [61] FAN W G, QUENEAU Y, POPOWYCZ F. HMF in multicomponent reactions: utilization of 5-hydroxymethylfurfural (HMF) in the Biginelli reaction[J]. Green Chem, 2018, 20: 485-492. [62] ZHAO S Y, CHEN Z Y, WEI N, et al. Highly efficient cooperative catalysis of single-site Lewis acid and Brønsted acid in a metal-organic framework for the Biginelli reaction[J]. Inorg Chem, 2019, 58: 7657-7661. [63] WANG G W. Mechanochemical organic synthesis[J]. Chem Soc Rev, 2013, 42: 7668-7770. [64] JIANG X P, CHEN J K, ZHU W J, et al. Cobalt(III)-catalyzed fast and solvent-free C-H allylation of indoles using mechano-chemistry[J]. J Org Chem, 2017, 82; 10665-10672. [65] KAMAL A, SRIKANTH Y V V, RAMAIAH M J, et al. Synthesis, anticancer activity and apoptosis inducing ability of bisindole linked pyrrolo[2,1-c][1,4]benzodiazepine conjugates[J]. Bioorg Med Chem Lett, 2012, 22: 571-578. |
[1] | Jing ZHU, Xue-Feng JIANG. R. B. Woodward: Changing Chemistry from Empirical to Rationally Planned Endeavor with Instruments [J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 610-614. |
[2] | Xiang-Min XU, Jie DENG, Yu-Qi DU, Hong-Liang SHEN, Ze-Kun AN, Cai-Ying SUN. Analysis of Pyrolytic Volatiles and Speculation of Pyrolysis Mechanism of Flame-Retardant Cotton Fabric with Spirocyclophosphamidazole [J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 380-388. |
[3] | Min-Xiao XU, Liang WANG, Cheng-Fang CHEN. Rongalite Promoted Arylation of Benzoquinone [J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 413-419. |
[4] | . [J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 460-462. |
[5] | Xiao-Yan WEI, Jin-Yan ZHANG, Lan SHENG, Sean Xiao-An ZHANG. Off‑on/On‑off Dual‑Mode Hydrochromic Materials: Water‑Induced Acidity Changes in the Microenvironment Regulate the Color Switching of Rhodamine Derivatives [J]. Chinese Journal of Applied Chemistry, 2022, 39(7): 1119-1128. |
[6] | Song-Song XUE, Zheng-Feng XIE, Jia-Wei HE, Tian-Yi ZHANG, Bao-Ping XIA, Yu-Qin LI. Synthesis of Sulfonylhydrazone Probe with High Selectivity and Rapid Identification of Hg(Ⅱ) Ion and Its Application in Adsorption [J]. Chinese Journal of Applied Chemistry, 2022, 39(5): 760-768. |
[7] | Zhong XU, Jun LI, En-Hui WU, Yan JIANG. Influence of Vanadium Tailings on the Thermal Stability and Electrical Conductivity of Expanded Graphite/ Paraffin Composite Phase Change Materials [J]. Chinese Journal of Applied Chemistry, 2022, 39(3): 461-469. |
[8] | LIU Xu, LI Yang-Ke-Xin, DU Li, YU Jian, WANG Jia-Cheng, GENG Yang, HAN Guang, SUN Kuan, LI Meng. Bio⁃inspired Hydrogels: Synthesis, Bionic Design and Applications in the Field of Energy Storage and Conversion [J]. Chinese Journal of Applied Chemistry, 2022, 39(1): 35-54. |
[9] | CHEN Song-Hua, CHEN Xin, LIU Yong-Qi, HE Mei-Yun, FU Shan-Shan, PENG Li, YANG Ji-En. Preparation and Optical Waveguide Property of Benzothiadiazole-Containing One Dimensional Micro-nanowires [J]. Chinese Journal of Applied Chemistry, 2021, 38(11): 1479-1485. |
[10] | REN Li-Lei, XIAO Li-Wei, LIU Guang-Xian, XU Ming-Ming. Synthesis of Cyclopenta[d]pyrimidinones and Hexahydroquinazolinones Catalyzed by Activated Carbon Supported Sulfuric Acid [J]. Chinese Journal of Applied Chemistry, 2021, 38(1): 44-50. |
[11] | WANG Qiushi, HE Junhui. Synthesis of Magnetic CuS Composite Nanomaterial and Its Specific Adsorption of Hg(II) in Water [J]. Chinese Journal of Applied Chemistry, 2020, 37(11): 1316-1323. |
[12] | ZHANG Tianyi, NIAN Wenxia, JIN Ying . Organocatalytic Asymmetric Michael Addition of Anthrone with β-Nitroolefins [J]. Chinese Journal of Applied Chemistry, 2015, 32(4): 422-427. |
[13] | GENG Xin, CHEN Cai, LI Guocheng, GAO Kangli, DENG Zhaojing, HAN Guozhi. Synthesis of Crown Ether Metal-prophyrin and Its Anion Recognition [J]. Chinese Journal of Applied Chemistry, 2015, 32(2): 171-176. |
[14] | FENG Cuilan, LIU Jianping, GUI Jianzhou, LIU Lantao. Application of Magnetic Nanoparticles Supported Pd Catalysts in C—C Bond Formation Reactions [J]. Chinese Journal of Applied Chemistry, 2015, 32(1): 19-26. |
[15] | YU Guiqin, LIU Jianjun, LIANG Yongmin. Tribological Investigation of Guanidinium Ionic Liquids as Lubricants for Si3N4/steel Contacts [J]. Chinese Journal of Applied Chemistry, 2015, 32(1): 99-103. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||