[1] BAYLAC P B. Vaccine development and collaborations: lessons from the history of the meningococcal A vaccine (1969-73)[J]. Med Hist, 2019, 63(4): 435-453. [2] 林颐. 难以平息的战争: 瘟疫与人——读《疫苗的史诗》[J]. 青春期健康, 2020(6): 68-69. LIN Y. An unquenchable war: the plague and people——reading “the epic of vaccines”[J]. Adolesc Health, 2020(6): 68-69. [3] ROBISON H L, HUNT L A , WEBSTER R G. Protection against a lethal influenza virus challenge by immunization with a hae mag glutinin-expressing plasmid DNA[J]. Nature, 1994, 12: 957-960. [4] SABORNI C, CHEN J Y, HUI W C, et al. Nanoparticle vaccines adopting virus-like features for enhanced immune potentiation[J]. Nanotheranostics, 2017, 1(3): 244-260. [5] VARTAK A, SUCHECK S J. Recent Advances in subunit vaccine carriers[J]. Vaccines, 2016, 4(2). [6] YENKOIDIOK D L, JEWELL C M. Integrating biomaterials and immunology to improve vaccines against infectious diseases[J]. ACS Biomater Sci Eng, 2020, 6(2): 759-778. [7] 黄帅. 基于纳米颗粒(MOF53)的鱼用候选疫苗的研究[D]. 海南大学, 2019. HUANG S. Research on candidate vaccines for fish based on nanoparticles (MOF53) [D]. Hainan University, 2019. [8] ZHU M, WANG R, NIE G. Applications of nanomaterials as vaccine adjuvants[J]. Hum Vaccines Immunother, 2014, 10(9): 2761-2774. [9] PEEK L J, MIDDAUGH C R, BERKLAND C. Nanotechnology in vaccine delivery[J]. Adv Drug Delivery Rev, 2008, 60(8): 915-928. [10] TAO W, HURST B L, SHAKYA A K, et al. Consensus M2e peptide conjugated to gold nanoparticles confers protection against H1N1, H3N2 and H5N1 influenza A viruses[J]. Antiviral Res, 2017, 141: 62-72. [11] TENG Z, SUN S, CHEN H, et al. Golden-star nanoparticles as adjuvant effectively promotes immune response to foot-and-mouth disease virus-like particles vaccine[J]. Vaccine, 2018, 36(45): 6752-6760. [12] SANCHEZ G D,GUEN P L, VILLERET B, et al. Silver nanoparticle-adjuvanted vaccine protects against lethal influenza infection through inducing BALT and IgA-mediated mucosal immunity[J]. Biomaterials, 2019, 217: 119308. [13] JIN X H, ZHENG L L, SONG M R, et al. A nano silicon adjuvant enhances inactivated transmissible gastroenteritis vaccine through activation the toll-like receptors and promotes humoral and cellular immune responses[J]. Nanomedicine, 2018, 14(4): 1201-1212. [14] LV H, YUAN Y, XU Q, et al. Carbon quantum dots anchoring MnO2/graphene aerogel exhibits excellent performance as electrode materials for supercapacitor[J]. J Power Sources, 2018, 398: 167-174. [15] SOARES D C F, SOARES L M, GOES A M, et al. Mesoporous SBA-16 silica nanoparticles as a potential vaccine adjuvant against Paracoccidioides brasiliensis[J].Micropor Mesopor Mater, 2020, 291: 109676. [16] 孙建宏. 免疫佐剂的研究进展[J]. 黑龙江畜牧兽医, 1998(2): 40-42, 49. SUN J H. Research progress of immune adjuvants[J]. Heilongjiang Xumu Shouyi, 1998(2): 40-42, 49. [17] 王宁, 邱倡, 陈敏囡, 等. 被覆生物相容材料的氧化铝纳米粒:一种高效率亚单位疫苗佐剂-传递系统(英文)[C]. 中国生物工程学会第十三届学术年会暨2019年全国生物技术大会论文集, 2019. WANG N, QIU C, CHEN M N, et al. Alumina nanoparticles coated with biocompatible materials: a high-efficiency subunit vaccine adjuvant-delivery system (English)[C]. The 13th academic year of the Chinese society of bioengineering conference and proceedings of the 2019 national biotechnology conference, 2019. [18] BILYY R, PARYZHAK S, TURCHENIUK K, et al. Aluminum oxide nanowires as safe and effective adjuvants for next-generation vaccines[J]. Mater Today, 2019, 22: 58-66. [19] ABDELALLAH N H, GABER Y, RASHED M E, et al. Alginate-coated chitosan nanoparticles act as effective adjuvant for hepatitis A vaccine in mice[J]. Int J Biol Macromol, 2020, 152: 904-912. [20] BOOKSTAVER M L, TSAI S J, BROMBERG J S, et al. Improving vaccine and immunotherapy design using biomaterials[J]. Trends Immunol, 2018, 39(2):135-150. [21] YYENKOIDIOK D L, JEWELL C M. Integrating biomaterials and immunology to improve vaccines against infectious diseases[J]. ACS Biomater Sci Eng, 2020, 6(2): 759-778. [22] PAN J, CUI Z. Self assembled nanoparticles: exciting platforms for vaccination[J]. Biotechnol J, 2020, 15(12): 2000087. [23] RICHNER J M, HIMANSU S, DOED K A, et al. Modified mRNA vaccines protect against Zika virus infection[J]. Cell, 2017, 168(6): 1114-1125. [24] MALEKI A, HASSANZADEH A F, VARZI Z, et al. Magnetic dextrin nanobiomaterial: an organic-inorganic hybrid catalyst for the synthesis of biologically active polyhydroquinoline derivatives by asymmetric Hantzsch reaction[J]. Mater Sci Eng, C, 2019, 109:110502. [25] MANOLOVA V, FLACE A, BAUER M, et al. Nanoparticles target distinct dendritic cell populations according to their size[J]. Eur J Immunol, 2008, 38(5): 1404-1413. [26] BUONAGURO L, PETRIZZO A, TORNESELLO M L, et al. Translating tumor antigens into cancer vaccines[J]. Clin Vaccine Immunol, 2011, 18(1): 23-34. [27] FENTON O S, OLAFSON K N, PLIIAI P S, et al. Advances in biomaterials for drug delivery[J]. Adv Mater, 2018: e1705328. [28] HAYAT S M G, DARROUDI M. Nanovaccine: a novel approach in immunization[J]. J Cell Physiol, 2019, 234(8): 12530-12536. [29] HU Y, SMITH D, ZHAO Z, et al. Alum as an adjuvant for nanoparticle based vaccines: a case study with a hybrid nanoparticle-based nicotine vaccine[J]. Nanomedicine, 2019, 20: 102023. [30] JIN Z, LI W, CAO H, et al. Antimicrobial activity and cytotoxicity of N-2-HACC and characterization of nanoparticles with N-2-HACC and CMC as a vaccine carrier[J]. Chem Eng J, 2013, 221: 331-341. [31] GIANVINCENZO P D, CALVO J, PEREZ S, et al. Negatively charged glyconanoparticles modulate and stabilize the secondary structures of a gp120 V3 loop peptide: toward fully synthetic HIV vaccine candidates[J]. Bioconjugate Chem, 2015, 26(4): 755-765. [32] LI S, YANG Y, LIN X, et al. Biocompatible cationic solid lipid nanoparticles as adjuvants effectively improve humoral and T cell immune response of foot and mouth disease vaccines[J]. Vaccine, 2020, 38(11): 2478-2486. [33] MARTINS K, COOPER C L, STRONSKY S M, et al. Adjuvant-enhanced CD4 T cell responses are critical to durable vaccine immunity[J]. EBioMedicine, 2016, 3: 67-78. [34] CLIMENT N, MUNIER S, et al. Loading dendritic cells with PLA-p24 nanoparticles or MVA expressing HIV genes induces HIV-1-specific T cell responses[J]. Vaccine, 2014, 32(47): 6266-6276. [35] GU P, WUSIMAN A, ZHANG Y, et al. Polyethylenimine-coated PLGA nanoparticles-encapsulated Angelica sinensis polysaccharide as an adjuvant for H9N2 vaccine to improve immune responses in chickens compared to Alum and oil-based adjuvants[J]. Vet Microbiol, 2020, 251: 108894. [36] KINGHT F C, GILCHUK P, KUMARUMAR A, et al. Mucosal immunization with a pH-responsive nanoparticle vaccine induces protective CD8(+) lung-resident memory T cells[J]. ACS Nano, 2019, 13(10): 10939-10960. [37] HUANG Y, NAN L, XIAO C, et al. Optimum preparation method for self-assembled PEGylation nano-adjuvant based on rehmannia glutinosa polysaccharide and its immunological effect on macrophages[J]. Int J Nanomed, 2019, 14: 9361-9375. [38] MENG H, LEONG W, LEONG K W, et al. Walking the line: the fate of nanomaterials at biological barriers[J]. Biomaterials, 2018, 174: 41-53. [39] QIAO D, LIU L, CHEN Y, et al. Potency of a scalable nanoparticulate subunit vaccine[J]. Nano Lett, 2018, 18(5): 3007-3016. [40] HANSON M C, CRESPO M P, ABRAHAM W, et al. Nanoparticulate STING agonists are potent lymph node-targeted vaccine adjuvants[J]. J Clin Invest, 2015, 125(6): 2532-2546. [41] WANG W, ZHOU X, BIAN Y, et al. Dual-targeting nanoparticle vaccine elicits a therapeutic antibody response against chronic hepatitis B[J]. Nat Nanotechnol, 2020, 15(5): 406-416. [42] WILSON J T. A sweeter approach to vaccine design[J]. Science, 2019, 363(6427): 584-585. [43] CROMMELIN D J A, VAN H P, STORM G. The role of liposomes in clinical nanomedicine development. what now? now what?[J]. J Controlled Release, 2020, 318: 256-263. [44] COVID-19 therapies and vaccine landscape[J]. Nat Mater, 2020, 19(8): 809. [45] SHIN M D, SHUKLA S, CHUNG Y H, et al. COVID-19 vaccine development and a potential nanomaterial path forward[J]. Nat Nanotechnol, 2020, 15(8): 646-655. [46] DAI L, ZHENG T, XU K, et al. A universal design of betacoronavirus vaccines against COVID-19, MERS, and SARS[J]. Cell, 2020, 182(3): 722-733. [47] GAO Q, BAO L, MAO H, et al. Development of an inactivated vaccine candidate for SARS-CoV-2[J]. Science, 2020, 69(6499): 77-81. [48] GEALL A J, VERMA A, OTTEN G R, et al. Nonviral delivery of self-amplifying RNA vaccines[J]. Proc Natl Acad Sci USA, 2012, 109(36): 14604-14609. [49] LUNG P, YANG J, LI Q. Nanoparticle formulated vaccine: opportunities and challenges[J]. Nanoscale, 2020, 12(10): 5746-5763. [50] SAHIN U, MUIK A, DERHOVANESSIAN E, et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses[J]. Nature, 2020, 586(7830): 594-599. [51] Nanomedicine and the COVID-19 vaccines[J]. Nat Nanotechnol, 2020, 15(12): 963. [52] KRAMMER F. SARS-CoV-2 vaccines in development[J]. Nature, 2020, 586(7830): 516-527. [53] CHAUHAN G, MADOU M J, KALRA S, et al. Nanotechnology for COVID-19: therapeutics and vaccine research[J]. ACS Nano, 2020, 14(7): 7760-7782. [54] GALLUCCI S, MATZINGER P. Danger signals: SOS to the immune system[J]. Curr Opin Immunol, 2001, 13(1): 114-119. [55] 黄少梅. 功能性碳点抗病毒药物与免疫佐剂的研究[D]. 华中农业大学, 2019. HUANG S M. The development of functional carbon dots in antiviral and adjuvant agents[D]. Huazhong Agricultural University, 2019. [56] 许利耕, 陈春英. 纳米材料作为重大疾病疫苗载体或佐剂的研究进展[J]. 科学通报, 2012, 57(25): 2341-2353. XU L G, CHEN C Y. Recent advances on nanomaterials as vaccine carriers and adjuvants for major diseases[J]. Chinese Sci Bull, 2012, 57: 2341-2353. [57] 苏新, 闫丹, 杨云裳. 多孔硅纳米材料作为疫苗载体和佐剂研究进展[J]. 中兽医医药杂志, 2017, 36(1): 20-23. SU X, YAN D, YANG Y S. Progress of nano-porous silicon as adjuvants or carrier in vaccine[J]. JTCVM, 2017, 36(1): 20-23. [58] 张蜜. 用于无针注射疫苗的纳米载药系统的初步研究[D]. 华中科技大学, 2008. ZHANG M. A preliminary study on nano vaccine delivery system intended for needle free injections[D]. Huazhong University of Science and Technology, 2008. [59] 何萍, 吕凤林, 陈月,等. 纳米铝佐剂吸附HBsAg及其免疫学效应的研究[J]. 高等学校化学学报, 2005, 26(5): 886-888. HE P, LV F L, CHEN Y, et al. Immune effect of HBsAg adsorbed by nanoparticulate alum adjuvant[J]. Chem J Chinese Univ, 2005, 26(5): 886-888. [60] DAMM D, ROJAS S L, THEOBALD H, et al. Calcium phosphate nanoparticle-based vaccines as a platform for improvement of HIV-1 Env antibody responses by intrastructural help[J]. Nanomaterials, 2019, 9(10): 1389. [61] WOHIFAT S, KHALANSKY A S, GELPERINA S, et al. Kinetics of transport of doxorubicin bound to nanoparticles across the blood-brain barrier[J]. J Controlled Release, 2011, 154(1): 103-107. [62] MALHOTRA M, PRAKASH S. Targeted drug delivery across blood-brain-barrier using cell penetrating peptides tagged nanoparticles[J]. Curr Nanosci, 2011, 7(1): 81-93. [63] DONG J, SHANG Y, TIAN L, et al. Detailed deposition analysis of inertial and diffusive particles in a rat nasal passage[J]. Inhalation Toxicol, 2018, 30(1): 29-39. |