[1] 丁芳, 张欢, 丁明明, 等. 聚合物弹性体材料应力-应变关系的理论研究[J]. 高分子学报, 2019, 50(12): 1357-1366. DING F, ZHANG H, DING M M, et al. Theoretical models for stress-strain curves of elastomer materials[J]. Acta Polym Sin, 2019, 50(12): 1357-1366. [2] 彭向峰, 李录贤. 超弹性材料本构关系的最新研究进展[J]. 力学学报, 2020, 52(5): 1221-1232. PENG X F, LI L X. State of the art of constitutive relations of hyperelastic materials[J]. Chinese J Theor Appl Mech, 2020, 52(5): 1221-1232. [3] DESTRADE M, SACCOMANDI G, SGURA I. Methodical fitting for mathematical models of rubber-like materials[J]. Proc Roy Soc A, 2017, 473(2198): 20160811. [4] PUGLISI G, SACCOMANDI G. Multiscale modelling of rubber-like materials and soft tissues: an appraisal[J]. Proc Roy Soc A, 2016, 472(2187): 20160060. [5] MOONEY M A. Theory of large elastic deformation[J]. J Appl Phys, 1940, 11(9):582-592. [6] TRELOAR L R G. The elasticity of a network of long-chain molecules. I[J]. Trans Faraday Soc, 1946, 42. [7] RIVLIN R S. Large elastic deformations of isotropic materials. iv. further developments of the general theory[J]. Philos Trans Roy Soc Lond Ser A, 1948, 241(835): 379-397. [8] OGDEN R. Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids[J]. Proc Ror Soc A, 1972, 326(1567): 565-584. [9] WAENER H R. Theory and rheology of dilute suspensions of finitely extendible dumbbells[J]. Ind Eng Chem Fundam, 1972, 11(3): 379-387. [10] KILIAN H G. Equation of state of real networks[J]. Polymer, 1981, 22(2): 209-217. [11] YEOH O H. Some forms of the strain energy function for rubber[J]. Rubber Chem Technol, 1993, 66(5): 754-771. [12] GENT A N. A new constitutive relation for rubber[J]. Rubber Chem Technol,1996, 69(1): 59-61. [13] SHARIFF M. Strain energy function for filled and unfilled rubberlike material[J]. Rubber Chem Technol, 2000, 73(1): 1-18. [14] CARROLL M M. A strain energy function for vulcanized rubbers[J]. J Elast, 2011, 103(2): 173-187. [15] JAMES H M, GUTH E. Theory of the elastic properties of rubber[J]. J Chem Phys, 1943, 11(10): 455-481. [16] FLORY P J, REHNER J. Statistical mechanics of cross-linked polymer networks I. rubberlike elasticity[J]. J Chem Phys, 1943, 11(11): 512-520. [17] FLORY P J. Network structure and the elastic properties of vulcanized rubber[J]. Chem Rev,1944, 35(1): 51-75. [18] ARRUDA E M, BOYCE M C. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials[J]. J Mech Phys Solids, 1993, 41(2): 389-412. [19] WU P D, GIESSEN E V D. On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers[J]. J Mech Phys Solids, 1993, 41(3): 427-456. [20] MARCKMANN G, VERRON E. Comparison of hyperelastic models for rubber-like materials[J]. Rubber Chem Technol, 2006, 79(5): 835-858. [21] KUHN W, GRUN F. Relations between elastic constants and the strain birefringence of high-elastic substances[J]. Colloid Polym Sci, 1942, 101(3): 248-271. [22] TRELOAR L R G, RIDING G. A non-gaussian theory for rubber in biaxial strain. I. mechanical properties[J]. Proc Roy Soc A, 1979, 369(1737): 261-280. [23] MANSOURI M R, DARIJANI H. Constitutive modeling of isotropic hyperelastic materials in an exponential framework using a self-contained approach[J]. Int J Solids Struct, 2014, 51(25/26): 4316-4326. [24] TRELOAR L R G. Stress-strain data for vulcanised rubber under various types of deformation[J]. Trans Faraday Soc, 1944, 40: 59-69. [25] ATTARD M M, HUNT G W. Hyperelastic constitutive modeling under finite strain[J]. Int J Eng Sci, 2004, 41(18/19): 5327-5350. |