Chinese Journal of Applied Chemistry ›› 2021, Vol. 38 ›› Issue (10): 1255-1267.DOI: 10.19894/j.issn.1000-0518.210363
• Review • Previous Articles Next Articles
Ai-Hua CHEN1,2(), Cheng-Yun ZHANG1, Zi-Chao DENG1, Ya-Lan SUN1
Received:
2021-07-26
Accepted:
2021-08-23
Published:
2021-10-01
Online:
2021-10-15
Contact:
Ai-Hua CHEN
About author:
chenaihua@buaa.edu.cnSupported by:
CLC Number:
Ai-Hua CHEN, Cheng-Yun ZHANG, Zi-Chao DENG, Ya-Lan SUN. Structure Control of Liquid Crystalline Block Copolymers in Liquid⁃Phase Self⁃assembly[J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1255-1267.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.210363
Fig.4 (a) Schematic diagram of the self-assembly of Janus single-stranded nanoparticles under photocrosslinking; (b) Phase diagram of particle morphology under different light time and PPEGMA mass fraction conditions[43]
Fig.5 Self-assembly of mesogen-jacketed liquid crystalline block copolymer solution to prepare polymer particles with reversed bicontinuous structure[46]
Fig.9 (a) Polymerization-induced hierarchical self-assembly of PMAA-b-PMAAz into anisotropic polymer particles; (b) Phase diagram of PMAA-b-PMAAz particle morphology[57]
样品 Sample | 转变温度 | 转变焓 | ||
---|---|---|---|---|
TS-Smb/℃ | TSm-Ic/℃ | ΔHS-Smb/(J·g-1) | ΔHSm-Ic/(J·g-1) | |
PMAAz57[ | 69.5 | 117.7 | 6.0 | 15.9 |
PMA11Bi91a | 116.7 | 148.8 | 7.4 | 16.8 |
PMAStb31[ | 151.1 | 165.8 | 13.1 | 18.2 |
Table 1 Thermal properties of different liquid crystalline homopolymers[59]
样品 Sample | 转变温度 | 转变焓 | ||
---|---|---|---|---|
TS-Smb/℃ | TSm-Ic/℃ | ΔHS-Smb/(J·g-1) | ΔHSm-Ic/(J·g-1) | |
PMAAz57[ | 69.5 | 117.7 | 6.0 | 15.9 |
PMA11Bi91a | 116.7 | 148.8 | 7.4 | 16.8 |
PMAStb31[ | 151.1 | 165.8 | 13.1 | 18.2 |
Fig.12 (a) PDMAEMA-b-PMMAz polymerization-induced self-assembly diagram; (b) Nanowire structure are obtained in linear PDMAEMA system; (c) “Necklace-like” nanofibers composed of square particles are obtained after charged; (d) “Holbrick-like” particles are obtained after cross-linking[61]
1 | JACOB N I. Intermolecular and surface forces[M]. Amsterdam: Elsevier, 2011. |
2 | MAI Y, EISENBERG A. Self-assembly of block copolymers[J]. Chem Soc Rev, 2012, 41(18): 5969. |
3 | TOY R, PEIRIS P M, GHAGHADA K B, et al. Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles[J]. Nanomedicine, 2014, 9(1): 121-134. |
4 | GENG Y, DALHAIMER P, CAI S, et al. Shape effects of filaments versus spherical particles in flow and drug delivery[J]. Nat Nanotechnol, 2007, 2(4): 249-255. |
5 | LI X, IOCOZZIA J, CHEN Y, et al. From precision synthesis of block copolymers to properties and applications of nanoparticles[J]. Angew Chem Int Ed, 2018, 57(8): 2046-2070. |
6 | ALBIGÈS R, KLEIN P, ROI S, et al. Water-based acrylic coatings reinforced by PISA-derived fibers[J]. Polym Chem, 2017, 8(34): 4992-4995. |
7 | ZHANG L, EISENBERG A. Multiple morphologies of “crew-cut” aggregates of polystyrene-b-poly(acrylic acid) block copolymers[J]. Science, 1995, 268(5218): 1728-1731. |
8 | MAI Y, EISENBERG A. Self-assembly of block copolymers[J]. Chem Soc Rev, 2012, 41(18): 5969. |
9 | ZHANG L, EISENBERG A. Multiple morphologies and characteristics of “crew-cut” micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions[J]. J Am Chem Soc, 1996, 118(13): 3168-3181. |
10 | CAMERON N S, CORBIERRE M K, EISENBERG A. Asymmetric amphiphilic block copolymers in solution: a morphological wonderland[J]. Canadian J Chem, 1999, 77(8): 1311-1326. |
11 | ZHANG L F, EISENBERG A. Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution[J]. Polym Adv Technol, 1998, 9(10/11): 677-699. |
12 | KIM H, KANG B, CHOI J, et al. Morphological behavior of A2B block copolymers in thin films[J]. Macromolecules, 2018, 51(3): 1181-1188. |
13 | HOEBEN F J M, JONKHEIJM P, MEIJER E W, et al. About supramolecular assemblies of π-conjugated systems[J]. Chem Rev, 2005, 105(4): 1491-1546. |
14 | WARREN N J, ARMES S P. Polymerization-induced self-assembly of block copolymer nano-objects via RAFT aqueous dispersion polymerization[J]. J Am Chem Soc, 2014, 136(29): 10174-10185. |
15 | CANNING S L, SMITH G N, ARMES S P. A critical appraisal of RAFT-mediated polymerization-induced self-assembly[J]. Macromolecules, 2016, 49(6): 1985-2001. |
16 | CHEN S, SHI P, ZHANG W. In situ synthesis of block copolymer nano-assemblies by polymerization-induced self-assembly under heterogeneous condition[J]. Chinese J Polym Sci, 2017, 35(4): 455-479. |
17 | DERRY M J, FIELDING L A, ARMES S P. Polymerization-induced self-assembly of block copolymer nanoparticles via RAFT non-aqueous dispersion polymerization[J]. Prog Polym Sci, 2016, 52: 1-18. |
18 | MELLOT G, BEAUNIER P, GUIGNER J, et al. Beyond simple AB diblock copolymers: application of bifunctional and trifunctional RAFT agents to PISA in water[J]. Macromol Rapid Commun, 2019, 40(2): 1800315. |
19 | ZHANG L, EISENBERG A. Thermodynamic vs kinetic aspects in the formation and morphological transitions of crew-cut aggregates produced by self-assembly of polystyrene-b-poly(acrylic acid) block copolymers in dilute solution[J]. Macromolecules, 1999, 32(7): 2239-2249. |
20 | ZHANG L, EISENBERG A. Morphogenic effect of added ions on crew-cut aggregates of polystyrene-b-poly(acrylic acid) block copolymers in solutions[J]. Macromolecules, 1996, 29(27): 8805-8815. |
21 | MAI Y, ZHOU Y, YAN D. Synthesis and size-controllable self-assembly of a novel amphiphilic hyperbranched multiarm copolyether[J]. Macromolecules, 2005, 38(21): 8679-8686. |
22 | HONG H, MAI Y, ZHOU Y, et al. Self-assembly of large multimolecular micelles from hyperbranched star copolymers[J]. Macromol Rapid Commun, 2007, 28(5): 591-596. |
23 | D'AGOSTO F, RIEGER J, LANSALOT M. RAFT-mediated polymerization-induced self-assembly[J]. Angew Chem Int Ed, 2020, 59(22): 8368-8392. |
24 | MELLOT G, GUIGNER J, JESTIN J, et al. Bisurea-functionalized RAFT agent: a straightforward and versatile tool toward the preparation of supramolecular cylindrical nanostructures in water[J]. Macromolecules, 2018, 51(24): 10214-10222. |
25 | MELLOT G, GUIGNER J M, BOUTEILLER L, et al. Templated PISA: driving polymerization-induced self-assembly towards fibre morphology[J]. Angew Chem Int Ed, 2019, 58(10): 3173-3177. |
26 | GUERRE M, SEMSARILAR M, GODIARD F, et al. Polymerization-induced self-assembly of PVAc-b-PVDF block copolymers via RAFT dispersion polymerization of vinylidene fluoride in dimethyl carbonate[J]. Polym Chem, 2017, 8(9): 1477-1487. |
27 | TRITSCHLER U, PEARCE S, GWYTHER J, et al. 50th anniversary perspective: functional nanoparticles from the solution self-assembly of block copolymers[J]. Macromolecules, 2017, 50(9): 3439-3463. |
28 | BOISSÉ S, RIEGER J, DI-CICCO A, et al. Synthesis via RAFT of amphiphilic block copolymers with liquid-crystalline hydrophobic block and their self-assembly in water[J]. Macromolecules, 2009, 42(22): 8688-8696. |
29 | 周其凤, 王新久. 液晶高分子[M]. 北京: 科学出版社, 1994. |
ZHOU Q F, WANG X J. Liquid crystal polymers[M]. Beijing: Science Press, 1994. | |
30 | PIÑOL R, JIA L, GUBELLINI F, et al. Self-assembly of PEG-b-liquid crystal polymer: the role of smectic order in the formation of nanofibers[J]. Macromolecules, 2007, 40(16): 5625-5627. |
31 | JIA L, CAO A, LÉVY D, et al. Smectic polymer vesicles[J]. Soft Matter, 2009, 5(18): 3446. |
32 | XING X, SHIN H, BOWICK M J, et al. Morphology of nematic and smectic vesicles[J]. Proc Natl Acad Sci, 2012, 109(14): 5202-5206. |
33 | LI X, JIN B, GAO Y, et al. Monodisperse cylindrical micelles of controlled length with a liquid-crystalline perfluorinated core by 1D “self-seeding”[J]. Angew Chem Int Ed, 2016, 55(38): 11392-11396. |
34 | JIN B, SANO K, AYA S, et al. One-pot universal initiation-growth methods from a liquid crystalline block copolymer[J]. Nat Commun, 2019, 10(1): 2397. |
35 | TONG X, WANG G, SOLDERA A, et al. How can azobenzene block copolymer vesicles be dissociated and reformed by light?[J]. J Phys Chem B, 2005, 109(43): 20281-20287. |
36 | HAN D, TONG X, ZHAO Y, et al. Block copolymers comprising π-conjugated and liquid crystalline subunits: induction of macroscopic nanodomain orientation[J]. Angew Chem Int Ed, 2010, 49(48): 9162-9165. |
37 | ZHAO Y, TREMBLAY L, ZHAO Y. Doubly photoresponsive and water-soluble block copolymers: synthesis and thermosensitivity[J]. J Polym Sci, Part A: Polym Chem, 2010, 48(18): 4055-4066. |
38 | FU S, ZHANG H, ZHAO Y. Optically and thermally activated shape memory supramolecular liquid crystalline polymers[J]. J Mater Chem C, 2016, 4(22): 4946-4953. |
39 | FAN W, TONG X, LI G, et al. Photoresponsive liquid crystalline polymer single-chain nanoparticles[J]. Polym Chem, 2017, 8(22): 3523-3529. |
40 | QU T, ZHAO Y, LI Z, et al. Micropore extrusion-induced alignment transition from perpendicular to parallel of cylindrical domains in block copolymers[J]. Nanoscale, 2016, 8(6): 3268-3273. |
41 | ZHENG X, LI Z, ZHAO Y, et al. Polydimethylsiloxane-assisted alignment transition from perpendicular to parallel of cylindrical microdomains in block copolymer films[J]. RSC Adv, 2016, 6(96): 93298-93302. |
42 | WANG P, CAO S, ZHAO Y, et al. Spherical compound micelles with lamellar stripes self-assembled from star liquid crystalline diblock copolymers in solution[J]. Macromol Chem Phys, 2017, 218(19): 1700148. |
43 | WEN W, HUANG T, GUAN S, et al. Self-assembly of single chain janus nanoparticles with tunable liquid crystalline properties from stilbene-containing block copolymers[J]. Macromolecules, 2019, 52(8): 2956-2964. |
44 | ZHOU Q F, LI H M, FENG X D. Synthesis of liquid-crystalline polyacrylates with laterally substituted mesogens[J]. Macromolecules, 1987, 20(1): 233-234. |
45 | CAI H, JIANG G, CHEN C, et al. New Morphologies and phase transitions of rod-coil dendritic-linear block copolymers depending on dendron generation and preparation procedure[J]. Macromolecules, 2014, 47(1): 146-151. |
46 | LYU X, XIAO A, ZHANG W, et al. Head-tail asymmetry as the determining factor in the formation of polymer cubosomes or hexasomes in a rod-coil amphiphilic block copolymer[J]. Angew Chem Int Ed, 2018, 57(32): 10132-10136. |
47 | HOU X, GUAN S, QU T, et al. Light-triggered reversible self-engulfing of Janus nanoparticles[J]. ACS Macro Lett, 2018, 7(12): 1475-1479. |
48 | 刘世勇. 大分子自组装新编[M]. 北京: 科学出版社, 2018. |
LIU S Y. Emerging trends in macromolecular self-assembly[M]. Beijing: Science Press, 2018. | |
49 | AN Z, SHI Q, TANG W, et al. Facile RAFT precipitation polymerization for the microwave-assisted synthesis of well-defined, double hydrophilic block copolymers and nanostructured hydrogels[J]. J Am Chem Soc, 2007, 129(46): 14493-14499. |
50 | ZHANG W, HONG C, PAN C. Polymerization-induced self-assembly of functionalized block copolymer nanoparticles and their application in drug delivery[J]. Macromol Rapid Commun, 2019, 40(2): 1800279. |
51 | LOWE A B. RAFT alcoholic dispersion polymerization with polymerization-induced self-assembly[J]. Polymer, 2016, 106: 161-181. |
52 | ZHANG X, BOISSÉ S, BUI C, et al. Amphiphilic liquid-crystal block copolymer nanofibers via RAFT-mediated dispersion polymerization[J]. Soft Matter, 2012, 8(4): 1130-1141. |
53 | HUO M, ZHANG Y, ZENG M, et al. Morphology evolution of polymeric assemblies regulated with fluoro-containing mesogen in polymerization-induced self-assembly[J]. Macromolecules, 2017, 50(20): 8192- 8201. |
54 | HUO M, LI D, SONG G, et al. Semi-fluorinated methacrylates: a class of versatile monomers for polymerization-induced self-assembly[J]. Macromol Rapid Commun, 2018, 39(7): 1700840. |
55 | HUO M, SONG G, ZHANG J, et al. Nonspherical liquid crystalline assemblies with programmable shape transformation[J]. ACS Macro Lett, 2018, 7(8): 956-961. |
56 | SHEN L, GUO H, ZHENG J, et al. RAFT polymerization-induced self-assembly as a strategy for versatile synthesis of semifluorinated liquid-crystalline block copolymer nanoobjects[J]. ACS Macro Lett, 2018, 7(3): 287-292. |
57 | GUAN S, ZHANG C, WEN W, et al. Formation of anisotropic liquid crystalline nanoparticles via polymerization-induced hierarchical self-assembly[J]. ACS Macro Lett, 2018, 7(3): 358-363. |
58 | GUAN S, WEN W, YANG Z, et al. Liquid crystalline nanowires by polymerization induced hierarchical self-assembly[J]. Macromolecules, 2019, 53(1): 465-472. |
59 | GUAN S, CHEN A. Influence of spacer lengths on the morphology of biphenyl-containing liquid crystalline block copolymer nanoparticles via polymerization-induced self-assembly[J]. Macromolecules, 2020, 53(15): 6235-6245. |
60 | ASAOKA S, UEKUSA T, TOKIMORI H, et al. Normally oriented cylindrical nanostructures in amphiphilic PEO-LC diblock copolymers films[J]. Macromolecules, 2011, 44(19): 7645-7658. |
61 | WEN W, CHEN A. Influence of single chain nanoparticle stabilizers on polymerization induced hierarchical self-assembly[J]. Polym Chem, 2021, 12(18): 2743-2751. |
[1] | Yong-Jie CUI, Jia-Xin ZHONG, Xun-Fan LIAO, Yi-Wang CHEN. Research Progress of Liquid Crystal Molecules for Application in Organic Solar Cells [J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1326-1339. |
[2] | MA Youmei, YANG Xiaoping*, JIA Xiaolong, GUO Lijuan. A Simple and Controllable Preparation of PbS Nanobelts [J]. Chinese Journal of Applied Chemistry, 2012, 29(05): 557-564. |
[3] | ZHAO Xinmei1, QIU Fubao2, WANG Haishui2*. Influence of Mn2+ on the Morphology Control of ZnS Nanoparticles [J]. Chinese Journal of Applied Chemistry, 2012, 29(02): 191-195. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||