Chinese Journal of Applied Chemistry ›› 2021, Vol. 38 ›› Issue (10): 1238-1254.DOI: 10.19894/j.issn.1000-0518.210372
• Review • Previous Articles Next Articles
Long-Fei LUO1‡, Yu-Jie LI2‡, Zhi-Hao SHEN1(), Shi-Jun ZHENG2, Xing-He FAN1
Received:
2021-07-29
Accepted:
2021-08-31
Published:
2021-10-01
Online:
2021-10-15
Contact:
Zhi-Hao SHEN
About author:
zshen@pku.edu.cnSupported by:
CLC Number:
Long-Fei LUO, Yu-Jie LI, Zhi-Hao SHEN, Shi-Jun ZHENG, Xing-He FAN. Progress in Self⁃assembly and Photo⁃responsiveness of Thin Films of Azobenzene⁃Based Liquid Crystalline Block Copolymers[J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1238-1254.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.210372
Fig.1 (a) Schematic diagram of excluded volume between the molecules of rodlike mesogens and solid surface; (b) Schematic representation of the orientation of rod-like CB mesogens on free surface and solid surface[64]
Fig.2 (a) Morphologies of CNA57B14-TFSI films with different thicknesses after thermal annealing and the absorption values at 350 nm before and after thermal annealing (Copyright 2021 American Chemical Society)[65]; (b) Morphologies of A101B22-TFSI films with different thicknesses after solvent vapor annealing and the absorption values at 336 nm before and after solvent vapor annealing (Copyright 2020 American Chemical Society)[20]
Fig.3 (a) Schematic diagram of the orientation of azobenzene molecules induced by linearly polarized light (LPL)[57]; (b) Direction for nonefficient photoreaction in an Az unit[61]; (c) Orientation of LC mesogens in an IMDS of a BCP containing an LCP[61]
Fig.4 Schematic diagrams of the arrangement of azobenzene mesogens in homopolymer PAz film and block copolymer PBMA-b-PAz film (a: homopolymer PAz; b: block copolymer PBMA-b-PAz)[61]
Fig.5 (a) Chemical structures of homopolymer PAz and block copolymers PBMA-b-PAz and PS-b-PAz; Schematic diagrams of in-plane orientation induced by surface segregation of PBMA-b-PAz and photo-induced in-plane uniaxial alignment of azobenzene mesogens in PAz film (b) and PS-b-PAz film (c)[70]
Fig.6 (a) Schematic diagram of alignment of azobenzene mesogens and microphase-separated structures in the irradiated and unirradiated areas of the azobenzene LCBCP films[36]; (b) Schematic diagram of the arrangement of PEO cylinders in regions of different thicknesses in the surface-relief structures produced by two coherent LPL of the azobenzene LCBCP films[79]; (c) Absorption values of azobenzene LCBCP films with different thicknesses before and after being aligned with LPL and the morphologies of LPL aligned films[65]
Fig.7 (a) Schematic diagram of the arrangement of various hierarchical structures in the process of the rearrangement of the oriented structure induced by LPL[38]; (b) Chemical structures of diblock copolymers and triblock copolymers and the rearrangement of the oriented structures induced by LPL[40]
Fig.8 Morphologies of the thermally annealed PEO-b-PAzPy films before and after being doped with 1,2-DITFB, and morphologies of PEO-b-PAzPy films doped with 1,2-DITFB after photo-alignment by LPL[81]
Fig.9 Morphologies of PEO-b-PM11Az film before and after UV light irradiation and schematic diagram of the orientation transformation of PEO nanocylinders induced by the photo-induced phase transition[39]
Fig.12 Chemical structure of P40A37 and schematic diagram of the structures of the holographic grating recorded on P40A37 thin film before and after annealing[12]
Fig.13 (a) Schematic diagrams of preparing patterned CaCO3 nanoparticles using the microphase-separated structures of azobenzene-based LCBCP before and after light regulation as the templates[13]; (b) Anisotropic ion-conducting membrane prepared with azobenzene-based LCBCP as a nanotemplate [28]
1 | BATES F S, FREDRICKSON G H. Block copolymer thermodynamics: theory and experiment[J]. 1990, 41(1): 525-557. |
2 | BATES F S. Polymer-polymer phase behavior[J]. Science, 1991, 251(4996): 898-905. |
3 | BATES F S, FREDRICKSON G H. Block copolymers\u2014 designer soft materials[J]. Phys Today, 1999, 52(2): 32-38. |
4 | LYU X, TANG Z, LI Y, et al. Tailored polymer particles with ordered network structures in emulsion droplets[J]. Langmuir, 2021, 37(1): 509-515. |
5 | XU Y, HU W. Formation of multicontinuous 3D network nanostructures with increased complexity in ABC-type block copolymers[J]. Langmuir, 2020, 36(38): 11324-11331. |
6 | KIM D H, SUH A, PARK G, et al. Nanoscratch-directed self-assembly of block copolymer thin films[J]. ACS Appl Mater Interfaces, 2021, 13(4): 5772-5781. |
7 | YU B, LI R, SEGALMAN R A. Tuning the double gyroid phase window in block copolymers via polymer chain conformation near the interface[J]. Macromolecules, 2021, 54(12): 5388-5396. |
8 | MARTIN J M, LI W, DELANEY K T, et al. SCFT study of diblock copolymer melts in electric fields: selective stabilization of orthorhombic fddd network phase[J]. Macromolecules, 2018, 51(9): 3369-3378. |
9 | WANG Q, GU K H, ZHANG Z, et al. Morphologies and photonic properties of an asymmetric brush block copolymer with polystyrene and polydimethylsiloxane side chains[J]. Polymer, 2018, 156: 169-178. |
10 | YANG Y, KIM H, XU J, et al. Responsive block copolymer photonic microspheres[J]. Adv Mater, 2018, 30(21): 1707344. |
11 | HÄCKEL M, KADOR L, KROPP D, et al. Holographic gratings in diblock copolymers with azobenzene and mesogenic side groups in the photoaddressable dispersed phase[J]. Adv Funct Mater, 2005, 15(10): 1722-1727. |
12 | YU H, OKANO K, SHISHIDO A, et al. Enhancement of surface-relief gratings recorded on amphiphilic liquid-crystalline diblock copolymer by nanoscale phase separation[J]. Adv Mater, 2005, 17(18): 2184-2188. |
13 | CAI F, CHEN Y X, WANG W Z, et al. Macroscopic regulation of hierarchical nanostructures in liquid-crystalline block copolymers towards functional materials[J]. Chinese J Polym Sci, 2021, 39(4): 397-416. |
14 | XIAO S, YANG X, EDWARDS E W, et al. Graphoepitaxy of cylinder-forming block copolymers for use as templates to pattern magnetic metal dot arrays[J]. Nanotechnology, 2005, 16(7): S324-S329. |
15 | YU H, NAKA Y, SHISHIDO A, et al. Well-defined liquid-crystalline diblock copolymers with an azobenzene moiety: synthesis, photoinduced alignment and their holographic properties[J]. Macromolecules, 2008, 41(21): 7959-7966. |
16 | CHAI J, WANG D, FAN X, et al. Assembly of aligned linear metallic patterns on silicon[J]. Nat Nanotechnol, 2007, 2(8): 500-506. |
17 | CROSSLAND E J W, KAMPERMAN M, NEDELCU M, et al. A bicontinuous double gyroid hybrid solar cell[J]. Nano Lett, 2009, 9(8): 2807-2812. |
18 | CHEN A, KOMURA M, KAMATA K, et al. Highly ordered arrays of mesoporous silica nanorods with tunable aspect ratios from block copolymer thin films[J]. Adv Mater, 2008, 20(4): 763-767. |
19 | BARAD H N, KWON H, ALARCÓN-CORREA M, et al. Large area patterning of nanoparticles and nanostructures: current status and future prospects[J]. ACS Nano, 2021, 15(4): 5861-5875. |
20 | LUO L, LYU X, TANG Z, et al. Thin-film self-assembly of block copolymers containing an azobenzene-based liquid crystalline polymer and a poly(ionic liquid)[J]. Macromolecules, 2020, 53(21): 9619-9630. |
21 | ZHANG Y D, PING J, WU Q W, et al. Bulk self-assembly and ionic conductivity of a block copolymer containing an azobenzene-based liquid crystalline polymer and a poly(ionic liquid)[J]. Polym Chem, 2017, 8(10): 1689-1698. |
22 | KAMBE Y, ARGES C G, CZAPLEWSKI D A, et al. Role of defects in ion transport in block copolymer electrolytes[J]. Nano Lett, 2019, 19(7): 4684-4691. |
23 | ARGES C G, KAMBE Y, SUH H S, et al. Perpendicularly aligned, anion conducting nanochannels in block copolymer electrolyte films[J]. Chem Mater, 2016, 28(5): 1377-1389. |
24 | JIN C, OLSEN B C, LUBER E J, et al. Nanopatterning via solvent vapor annealing of block copolymer thin films[J]. Chem Mater, 2017, 29(1): 176-188. |
25 | SINTUREL C, VAYER M, MORRIS M, et al. Solvent vapor annealing of block polymer thin films[J]. Macromolecules, 2013, 46(14): 5399-5415. |
26 | BODYCOMB J, FUNAKI Y, KIMISHIMA K, et al. Single-grain lamellar microdomain from a diblock copolymer[J]. Macromolecules, 1999, 32(6): 2075-2077. |
27 | ASAOKA S, UEKUSA T, TOKIMORI H, et al. Normally oriented cylindrical nanostructures in amphiphilic PEO-LC diblock copolymers films[J]. Macromolecules, 2011, 44(19): 7645-7658. |
28 | LI J, KAMATA K, KOMURA M, et al. Anisotropic ion conductivity in liquid crystalline diblock copolymer membranes with perpendicularly oriented PEO cylindrical domains[J]. Macromolecules, 2007, 40(23): 8125-8128. |
29 | MAJEWSKI P W, GOPINADHAN M, JANG W S, et al. Anisotropic ionic conductivity in block copolymer membranes by magnetic field alignment[J]. J Am Chem Soc, 2010, 132(49): 17516-17522. |
30 | THURN-ALBRECHT T, DEROUCHEY J, RUSSELL T P, et al. Overcoming interfacial interactions with electric fields[J]. Macromolecules, 2000, 33(9): 3250-3253. |
31 | JO S, JEON S, KIM H, et al. Balanced interfacial interactions for fluoroacrylic block copolymer films and fast electric field directed assembly[J]. Chem Mater, 2020, 32(22): 9633-9641. |
32 | KATHREIN C C, BAI W, CURRIVAN-INCORVIA J A, et al. Combining graphoepitaxy and electric fields toward uniaxial alignment of solvent-annealed polystyrene-b-poly(dimethylsiloxane) block copolymers[J]. Chem Mater, 2015, 27(19): 6890-6898. |
33 | HAN E, KANG H, LIU C C, et al. Graphoepitaxial assembly of symmetric block copolymers on weakly preferential substrates[J]. Adv Mater, 2010, 22(38): 4325-4329. |
34 | SHI L Y, LEE S, CHENG L C, et al. Thin film self-assembly of a silicon-containing rod-coil liquid crystalline block copolymer[J]. Macromolecules, 2019, 52(2): 679-689. |
35 | SHI L Y, LEE S, DU Q, et al. Bending behavior and directed self-assembly of rod-coil block copolymers[J]. ACS Appl Mater Interfaces, 2021, 13(8): 10437-10445. |
36 | YU H, IYODA T, IKEDA T. Photoinduced alignment of nanocylinders by supramolecular cooperative motions[J]. J Am Chem Soc, 2006, 128(34): 11010-11011. |
37 | YU H, KOBAYASHI T, HU G H. Photocontrolled microphase separation in a nematic liquid-crystalline diblock copolymer[J]. Polymer, 2011, 52(7): 1554-1561. |
38 | SANO M, NAKAMURA S, HARA M, et al. Pathways toward photoinduced alignment switching in liquid crystalline block copolymer films[J]. Macromolecules, 2014, 47(20): 7178-7186. |
39 | WANG T, LI X, DONG Z, et al. Vertical orientation of nanocylinders in liquid-crystalline block copolymers directed by light[J]. ACS Appl Mater Interfaces, 2017, 9(29): 24864-24872. |
40 | SANO M, SHAN F, HARA M, et al. Dynamic photoinduced realignment processes in photoresponsive block copolymer films: effects of the chain length and block copolymer architecture[J]. Soft Matter, 2015, 11(29): 5918-5925. |
41 | SANO M, HARA M, NAGANO S, et al. New aspects for the hierarchical cooperative motions in photoalignment process of liquid crystalline block copolymer films[J]. Macromolecules, 2015, 48(7): 2217-2223. |
42 | YU H, IKEDA T. Photocontrollable liquid-crystalline actuators[J]. Adv Mater, 2011, 23(19): 2149-2180. |
43 | YANG B, CAI F, HUANG S, et al. Athermal and soft multi-nanopatterning of azopolymers: phototunable mechanical properties[J]. Angew Chem Int Ed, 2020, 59(10): 4035-4042. |
44 | LIU J, WANG Y, WANG J, et al. Inkless rewritable photonic crystals paper enabled by a light-driven azobenzene mesogen switch[J]. ACS Appl Mater Interfaces, 2021, 13(10): 12383-12392. |
45 | WANG C, DONG W, LI P, et al. Reversible ion-conducting switch by azobenzene molecule with light-controlled sol-gel transitions of the pnipam ion gel[J]. ACS Appl Mater Interfaces, 2020, 12(37): 42202-42209. |
46 | ZHANG P, LAN Z, WEI J, et al. Photodeformable azobenzene-containing polyimide with flexible linkers and molecular alignment[J]. ACS Macro Lett, 2021, 10(4): 469-475. |
47 | ZHOU H, XUE C, WEIS P, et al. Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions[J]. Nat Chem, 2016, 9: 145. |
48 | ITO S, YAMASHITA A, AKIYAMA H, et al. Azobenzene-based (meth) acrylates: controlled radical polymerization, photoresponsive solid⁃liquid phase transition behavior, and application to reworkable adhesives[J]. Macromolecules, 2018, 51(9): 3243-3253. |
49 | WANG C, LI P, ZHANG S, et al. Azobenzene molecular trigger controlling phase transitions of pnipam in ionic liquids and light-controlled adhesiveness[J]. Macromolecules, 2020, 53(12): 4901-4907. |
50 | MA S, LI X, HUANG S, et al. A light-activated polymer composite enables on-demand photocontrolled motion: transportation at the liquid/air interface[J]. Angew Chem Int Ed, 2019, 58(9): 2655-2659. |
51 | YAGER K G, TANCHAK O M, GODBOUT C, et al. Photomechanical effects in azo-polymers studied by neutron reflectometry[J]. Macromolecules, 2006, 39(26): 9311-9319. |
52 | BUSHUYEV O S, AIZAWA M, SHISHIDO A, et al. Shape-shifting azo dye polymers: towards sunlight-driven molecular devices[J]. Macromol Rapid Comm, 2018, 39(1): 1700253. |
53 | CHENG Z, WANG T, LI X, et al. NIR-Vis-UV light-responsive actuator films of polymer-dispersed liquid crystal/graphene oxide nanocomposites[J]. ACS Appl Mater Interfaces, 2015, 7(49): 27494-27501. |
54 | NASROLLAHI A, KUMAR V, LEE M H, et al. Polyimide-free planar alignment of nematic liquid crystals: sequential interfacial modifications through dual-wavelength in situ photoalignment[J]. ACS Appl Mater Interfaces, 2019, 11(16): 15141-15151. |
55 | KUMAR V, YE Z, JIANG H, et al. Highly stable, pretilted homeotropic alignment of liquid crystals enabled by in situ self-assembled, dual-wavelength photoalignment[J]. ACS Appl Electron Mater, 2020, 2(7): 2017-2025. |
56 | MORIKAWA Y, KONDO T, NAGANO S, et al. Photoinduced 3D ordering and patterning of microphase-separated nanostructure in polystyrene-based block copolymer[J]. Chem Mater, 2007, 19(7): 1540-1542. |
57 | YU H. Photoresponsive liquid crystalline block copolymers: from photonics to nanotechnology[J]. Prog Polym Sci, 2014, 39(4): 781-815. |
58 | 朱煜, 王晓工. 偶氮液晶嵌段共聚物自组装和光响应性研究进展[J]. 高分子学报, 2013(8): 962-970. |
ZHU Y, WANG X G. Recent developments in liquid crystalline azo block copolymers: self-assembly and photoresponsive properties[J]. Acta Polym Sin, 2013(8): 962-970. | |
59 | 王添洁, 于海峰. 光响应性液晶嵌段聚合物基功能材料的研究[J]. 液晶与显示, 2015, 30(4): 543-552. |
WANG T J, YU H F. Progress in photoresponsive liquid-crystalline block copolymer[J]. Chinese J Liquid Cryst Dis, 2015, 30(4): 543-552. | |
60 | OKANO K. Anisotropic excluded volume effect and alignment of nematic liquid crystal in a sandwich cell[J]. Jpn J Appl Phys, 1983, 22(2): L343-L344. |
61 | NAGANO S. Random planar orientation in liquid-crystalline block copolymers with azobenzene side chains by surface segregation[J]. Langmuir, 2019, 35(17): 5673-5683. |
62 | GRELET E, BOCK H. Control of the orientation of thin open supported columnar liquid crystal films by the kinetics of growth[J]. Europhys Lett (EPL), 2006, 73(5): 712-718. |
63 | KIMURA H, NAKANO H. Statistical theory of surface tension and molecular orientations at the free surface in nematic liquid crystals[J]. J Phys Soc Jpn, 1985, 54(5): 1730-1736. |
64 | TANAKA D, MIZUNO T, HARA M, et al. Evaluations of mesogen orientation in thin films of polyacrylate with cyanobiphenyl side chain[J]. Langmuir, 2016, 32(15): 3737-3745. |
65 | LUO L, TANG Z, YANG W, et al. Thickness-dependent photo-aligned thin-film morphologies of a block copolymer containing an azobenzene-based liquid crystalline polymer and a poly(ionic liquid)[J]. Langmuir, 2021, 37(32): 9774-9784. |
66 | BHATIA Q S, PAN D H, KOBERSTEIN J T. Preferential surface adsorption in miscible blends of polystyrene and poly(vinyl methyl ether)[J]. Macromolecules, 1988, 21(7): 2166-2175. |
67 | HUANG E, RUSSELL T P, HARRISON C, et al. Using surface active random copolymers to control the domain orientation in diblock copolymer thin films[J]. Macromolecules, 1998, 31(22): 7641-7650. |
68 | YOKOYAMA H, TANAKA K, TAKAHARA A, et al. Surface structure of asymmetric fluorinated block copolymers[J]. Macromolecules, 2004, 37(3): 939-945. |
69 | YOKOYAMA H, MIYAMAE T, HAN S, et al. Spontaneously formed hydrophilic surfaces by segregation of block copolymers with water-soluble blocks[J]. Macromolecules, 2005, 38(12): 5180-5189. |
70 | FUKUHARA K, FUJII Y, NAGASHIMA Y, et al. Liquid-crystalline polymer and block copolymer domain alignment controlled by free-surface segregation[J]. Angew Chem Int Ed, 2013, 52(23): 5988-5991. |
71 | FUKUHARA K, HARA M, NAGANO S, et al. Free surface-induced planar orientation in liquid crystalline block copolymer films: on the design of additive surface active polymer layer[J]. Mol Cryst Liq Cryst, 2014, 601(1): 11-19. |
72 | FUKUHARA K, NAGANO S, HARA M, et al. Free-surface molecular command systems for photoalignment of liquid crystalline materials[J]. Nat Commun, 2014, 5(1): 3320. |
73 | NAGANO S. Inducing planar orientation in side-chain liquid-crystalline polymer systems via interfacial control[J]. Chem Rec, 2016, 16(1): 378-392. |
74 | MAO G, OBER C K. Block copolymers containing liquid crystalline segments[J]. Acta Polym, 1997, 48(10): 405-422. |
75 | TOKITA M, ADACHI M A, MASUYAMA S, et al. Characteristic shear-flow orientation in LC block copolymer resulting from compromise between orientations of microcylinder and LC mesogen[J]. Macromolecules, 2007, 40(20): 7276-7282. |
76 | TIAN Y, WATANABE K, KONG X, et al. Synthesis, nanostructures, and functionality of amphiphilic liquid crystalline block copolymers with azobenzene moieties[J]. Macromolecules, 2002, 35(9): 3739-3747. |
77 | MOTONORI K, KAZUHITO W, TOMOKAZU I, et al. Laboratory-GISAXS measurements of block copolymer films with highly ordered and normally oriented nanocylinders[J]. Chem Lett, 2009, 38(5): 408-409. |
78 | NAGANO S, KOIZUKA Y, MURASE T, et al. Synergy effect on morphology switching: real-time observation of photo-orientation of microphase separation in a block copolymer[J]. Angew Chem Int Ed, 2012, 51(24): 5884-5888. |
79 | MORIKAWA Y, NAGANO S, WATANABE K, et al. Optical alignment and patterning of nanoscale microdomains in a block copolymer thin film[J]. Adv Mater, 2006, 18(7): 883-886. |
80 | HUANG S, PANG L, CHEN Y, et al. Hydrogen bond induces hierarchical self-assembly in liquid-crystalline block copolymers[J]. Macromol Rapid Commun, 2018, 39(6): 1700783. |
81 | CHEN Y, HUANG S, WANG T, et al. Enhanced ordering and efficient photoalignment of nanostructures in block copolymers enabled by halogen bond[J]. Macromolecules, 2020, 53(4): 1486-1493. |
82 | 李玉洁, 罗龙飞, 沈志豪, 等. 非偏振光诱导含聚二甲基硅氧烷的偶氮苯液晶嵌段共聚物薄膜微相分离结构的垂直取向[J]. 高分子学报, 2021, DOI: 10.11777/j.issn1000-3304.2021.21158. |
LI Y J, LUO L F, SHEN Z H, et al. Perpendicular orientation of polydimethylsiloxane nanocylinders in thin film of a liquid crystalline block copolymer induced by unpolarized light[J]. Acta Polym Sin, 2021, DOI: 10.11777/j.issn1000-3304.2021.21158. | |
83 | CHEN Q, BAE S C, GRANICK S. Directed self-assembly of a colloidal kagome lattice[J]. Nature, 2011, 469(7330): 381-384. |
84 | CARLSON A, BOWEN A M, HUANG Y, et al. Transfer printing techniques for materials assembly and micro/nanodevice fabrication[J]. Adv Mater, 2012, 24(39): 5284-5318. |
85 | QIAO W, HUANG W, LIU Y, et al. Toward scalable flexible nanomanufacturing for photonic structures and devices[J]. Adv Mater, 2016, 28(47): 10353-10380. |
86 | CHEN Y, HUANG S, WANG T, et al. Confined self-assembly enables stabilization and patterning of nanostructures in liquid-crystalline block copolymers[J]. Macromolecules, 2019, 52(4): 1892-1898. |
[1] | HU Xiao-Hua, XIONG Shi-Sheng. Advanced Lithography: Directed Self-Assembly [J]. Chinese Journal of Applied Chemistry, 2021, 38(9): 1029-1078. |
[2] | TIAN Xin, LAI Han-Wen, LIU Ya-Dong, JI Sheng-Xiang. Analysis of Defects in Block Copolymer Films by a Convolution Algorithm [J]. Chinese Journal of Applied Chemistry, 2021, 38(9): 1199-1208. |
[3] | Yu-Fan JI, Feng CAI, Hai-Feng YU. Research Progress on Photoswitchable Surface Topography of Liquid Crystalline Polymer [J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1226-1237. |
[4] | Ai-Hua CHEN, Cheng-Yun ZHANG, Zi-Chao DENG, Ya-Lan SUN. Structure Control of Liquid Crystalline Block Copolymers in Liquid⁃Phase Self⁃assembly [J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1255-1267. |
[5] | Zhao-Yong ZHANG, Qian LI, Da-Lin WANG, Jiang-Lin FANG, Dong-Zhong CHEN. Controlled Synthesis and Photophysical Properties of Liquid Crystalline Diblock Copolymers with Side⁃Chain Discotic Triphylene and Calamitic Azobenzene Mesogens [J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1340-1352. |
[6] | Zhao-Yong ZHANG, Qian LI, Da-Lin WANG, Jiang-Lin FANG, Dong-Zhong CHEN. Controlled Synthesis and Photophysical Properties of Liquid Crystalline Diblock Copolymers with Side⁃Chain Discotic Triphylene and Calamitic Azobenzene Mesogens [J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 0-0. |
[7] | ZHANG Yanhui, WANG Lin, MUSLIM Arzugul, LAN Haidie. Influence of the Core Forming Block Length of Polystyrene-b-Poly(acrylic acid) Template on the Size and Properties of Polyaniline [J]. Chinese Journal of Applied Chemistry, 2020, 37(7): 764-771. |
[8] | LI Maosheng, CHEN Jinlong, TAO Youhua. Regio- and Stereoselective Ring-Opening Metathesis Polymerization of Amino Acid Functionalized Cyclooctenes [J]. Chinese Journal of Applied Chemistry, 2020, 37(3): 280-292. |
[9] | LIU Ning,LIU Shuilin,WU Suyun,TANG Xinde,WU Zhi,LI Aiyang. CTAB-P123-Assisted Synthesis of Orderly Mesoporous KF/Al-Ce-SBA-15 Solid Base and Its Catalytic Application [J]. Chinese Journal of Applied Chemistry, 2019, 36(11): 1294-1300. |
[10] | ZHANG Xiaosa, JI Shengxiang. Synthesis and Directed Self-assembly of Cylinder-Forming Poly(styrene-b-lactide) Block Copolymers [J]. Chinese Journal of Applied Chemistry, 2018, 35(12): 1420-1426. |
[11] | XU Yuzhong,TONG Yongfen,TAN Licheng,CHEN Yiwang. Block Copolymer Electrolytes for Lithium Batteries [J]. Chinese Journal of Applied Chemistry, 2017, 34(3): 245-261. |
[12] | LI Liangui, FU Zhipeng, LI Mingchao, ZHANG Qiang, WANG Rui, WANG Guoqiang, JIANG Min. Synthesis and Characterization of Polyethylene Terephthalate-b-poly(ethylene 2,5-furandicarboxylate) Block Polyester [J]. Chinese Journal of Applied Chemistry, 2017, 34(1): 54-59. |
[13] | ZHANG Fan, WANG Lulu, WANG Jilin, FENG Ruijiang, ZHANG Yang. Gemini-type Cationic Molecules-Styrene Block Polymer Anion Conducting Membrane Prepared by in-situ Polymerization [J]. Chinese Journal of Applied Chemistry, 2016, 33(6): 693-700. |
[14] | ZHENG Chao, HUANG Haiying*, HE Tianbai*. Research Progress in Gradient Copolymers [J]. Chinese Journal of Applied Chemistry, 2014, 31(11): 1237-1247. |
[15] | QI Yin, YUAN Jinfang,GAO Qingyu*. Preparation of a Block Copolymer Poly(N-isopropylacrylamide)-b-poly(diacetone acrylamide) and Its Loading and Release Properties to Folic Acid [J]. Chinese Journal of Applied Chemistry, 2014, 31(06): 642-648. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||