[1] LOW J X, YU J G, JARONIEC M, et al. Heterojunction photocatalysts[J]. Adv Mater, 2017, 29(20): 1601694.1-1601694.20. [2] FUJISHIMA A, ZHANG X T, TRYK D A, et al. TiO2 photocatalysis and related surface phenomena[J]. Surf Sci Rep, 2008, 63(12): 515-582. [3] CHEN X B, LIU L, YU P Y, et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science, 2011, 331(6018): 746-750. [4] XIA Y C, WY C S, ZHAO N Y, et al. Spongy MoO3 hierarchical nanostructures for excellent performance ethanol sensor[J]. Mater Lett, 2016, 171: 117-120. [5] 胡媛. 层状化合物三氧化钼的制备及其光电性质研究[D]. 安徽:安徽大学,2007. HU Y. Study on synthesis and photoelectricity properties of layered compound-molybdenum trioxide[D]. Anhui:Anhui University,2007. [6] HEMANT K J, SARKAR S. A Novel in Situ γ-alumina coating method and CO oxidation over MoO3/Cu catalysts[J]. Ind Eng Chem Res, 2001, 40(23): 5543-5546. [7] 董晓东, 董相廷, 刘俊华, 等. MoO3纳米粒子水溶胶的制备与光致变色性质研究[J]. 稀有金属材料与工程, 2005, 34(3): 421-424. DONG X D, DONG X T, LIU J H, et al. Study of preparation and photochromism of MoO3 nanoparticles hydrosol[J]. Rare Met Mater Eng, 2005, 34(3): 421-424. [8] 梅雪峰, 宋继梅, 王红, 等. 六方相MoO3的制备及其光催化活性[J]. 广州化工, 2011, 39(12): 6-9. MEI X F, SONG J M, WANG H, et al. Synthesis and photocatalytic activity of hexagonal phase MoO3[J]. Guangzhou Chem Ind, 2011, 39(12): 6-9. [9] GREINER M T, HELANDER M G, TANG W M, et al. Universal energy-level alignment of molecules on metal oxides[J]. Nat Mater, 2012, 11(1): 76-81. [10] ZHENG L, XU Y, JIN D, et al. Novel metastable hexagonal MoO3 nanobelts: synthesis, photochromic, and electrochromic properties[J]. Chem Mater, 2009, 21(23): 5681-5690. [11] CHITHAMBARARAJ A, SANJINI N S, BOSE A C, et al. Flower-like hierarchical h-MoO3: new findings of efficient visible light driven nano photocatalyst for methylene blue degradation[J]. Catal Sci Tech, 2013, 3(5): 1405-1414. [12] WANG W, TADE M O, SHAO Z P, et al. Nitrogen-doped simple and complex oxides for photocatalysis: a review[J]. Prog Mater Sci, 2018, 92: 33-63. [13] PARK H, PARK Y, KIM W, et al. Surface modification of TiO2 photocatalyst for environmental applications[J]. J Photochem Photobiol C, 2013, 15: 1-20. [14] LIU Y B, ZHU G Q, GAO J Z, et al. A novel synergy of Er3+/Fe3+ co-doped porous Bi5O7I microspheres with enhanced photocatalytic activity under visible-light irradiation[J]. Appl Catal B-Environ, 2017, 205: 421-432. [15] LINIC S, CHRISTOPHER P, INGRAM D B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[J]. Nat Mater, 2011, 10(12): 911-921. [16] CORDERO-LANZAC T, PALOS R, ARANDES J M, et al. Stability of an acid activated carbon based bifunctional catalyst for the raw bio-oil hydrodeoxygenation[J]. Appl Catal B-Environ, 2017, 203: 389-399. [17] WANG Y T, CAI J M, WU M Q, et al. Rational construction of oxygen vacancies onto tungsten trioxide to improve visible light photocatalytic water oxidation reaction[J]. Appl Catal B-Environ, 2018, 239: 398-407. [18] CHENG H F, QIAN X F, KUWAHARA Y, et al. A plasmonic molybdenum oxide hybrid with reversible tunability for visible-light-enhanced catalytic reactions[J]. Adv Mater, 2015, 27(31):4616-4621. [19] WANG Y L, LUO Q, WU N, et al. Solution-processed MoO3∶PEDOT∶PSS hybrid hole transporting layer for inverted polymer solar cells[J]. ACS Appl Mater Interfaces, 2015, 7(13):7170-7179. [20] YANG B, CHEN Y, CUI Y, et al. Over 100 nm thick MoOx films with superior hole collection and transport properties for organic solar cells[J]. Adv Energy Mater, 2018, 8(25): 1800698.1-1800698.9. [21] QIN P L, FANG G J, CHENG F, et al. Sulfur-doped molybdenum oxide anode interface layer for organic solar cell application[J]. ACS Appl Mater Interfaces, 2014, 6(4): 2963-2973. [22] SAKAUSHI K, THOMAS J, KASKEL S, et al. Aqueous solution process for the synthesis and assembly of nanostructured one-dimensional alpha-MoO3 electrode materials[J]. Chem Mater, 2013, 25(12):2557-2563. |