[1] Gruber N,Galloway J N. An Earth-System Perspective of the Global Nitrogen Cycle[J]. Nature,2008,451(7176):293-296. [2] Erisman J W,Sutton M A,Galloway J,et al. How a Century of Ammonia Synthesis Changed the World[J]. Nat Geosci,2008,1(10):636-639. [3] Shi L,Li Q,Ling C,et al. Metal-free Electrocatalyst for Reducing Nitrogen to Ammonia Using a Lewis Acid Pair[J]. J Mater Chem A,2019,7(9):4865-4871. [4] Schlçgl R. Catalytic Synthesis of Ammonia-A “Never-ending Story”?[J]. Angew Chem Int Ed,2003,42(18):2004-2008. [5] Rosca V,Duca M,De Groot M T,et al. Nitrogen Cycle Electrocatalysis[J]. Chem Rev,2009,109(6):2209-2244. [6] Geng Z,Liu Y,Kong X,et al. Achieving a Record-High Yield Rate of 120.9 μg NH3 mg-1 cat·h-1 for N2 Electrochemical Reduction over Ru Single-atom Catalysts[J]. Adv Mater,2018,30(40):1803498(1-6). [7] Ren X,Cui G,Chen L,et al. Electrochemical N2 Fixation to NH3 under Ambient Conditions:Mo2N Nanorod as a Highly Efficient and Selective Catalyst[J]. Chem Commun,2018,54(61):8474-8477. [8] WANG Ya,YANG Yulu,CHU Yiyue,et al. Research Progess of Electrocatalytic Nitrogen Reduction Catalysts[J]. Chem Res,2019,30(5):532-536(in Chinese). 王雅,杨雨露,楚意月,等. 电催化氮还原催化剂的研究进展[J]. 化学研究,2019,30(5):532-536. [9] Xu B,Liu Z,Qiu W,et al. La2O3 Nanoplate: An Efficient Electrocatalyst for Atificial N2 Fixation to NH3 with Excellent Selectivity at Ambient Condition[J]. Electrochim Acta,2019,298:106-111. [10] Zhang L,Ji X Q,Ren X,et al. Electrochemical Ammonia Synthesis via Nitrogen Reduction Reaction on a MoS2 Catalyst:Theoretical and Experimental Studies[J]. Adv Mater,2018,30(28):1800191(1-6). [11] Xia L,Wu X,Wang Y,et al. S-doped Carbon Nanospheres:An Efficient Electrocatalyst Toward Artificial N2 Fixation to NH3[J]. Small Methods,2019,3(6):1800251(1-5). [12] Chen S,Jang H,Wang J,et al. Bimetallic Metal-organic Framework-derived MoFe-PC Microspheres for Electrocatalytic Ammonia Synthesis under Ambient Cnditions[J]. J Mater Chem A,2020,8(4):2099-2104. [13] Han X Q,Lang Z L,Yan L K,et al. Atomic Nb Anchoring on Graphdiyne as a New Potential Electrocatalyst for Nitrogen Fixation:A Computational View[J]. Adv Theory Simul,2019,2(12):1900132(1-7). [14] Kyriakou V,Garagounis I,Vasileiou E,et al. Progress in the Electrochemical Synthesis of Ammonia[J]. Catal Today,2016,286:2-13. [15] Zhu D,Zhang L,Ruther R E,et al. Photo-illuminated Diamond as a Solid-state Source of Solvated Electrons in Water for Nitrogen Reduction[J]. Nat Mater,2013,12(6):836-841. [16] Hu B,Hu M,Seefeldt L,et al. Electrochemical Dinitrogen Reduction to Ammonia by Mo2N:Catalysis or Decomposition?[J]. ACS Energy Lett,2019,4(5):1053-1054 . [17] Zhang R,Zhang Y, Ren X,et al. High-efficiency Electrosynthesis of Ammonia with High Selectivity under Ambient Conditions Enabled by VN Nanosheet Array[J]. ACS Sustainable Chem Eng,2018,6(8):9545-9549. [18] Wang L,Xia M,Wang H,et al. Greening Ammonia Toward the Solar Ammonia Refinery[J]. Joule,2018,2(6):1055-1074. [19] Zhang X,Liu Q,Shi X,et al. TiO2 Nanoparticles-Reduced Graphene Oxide Hybrid:An Afficient and Durable Electrocatalyst toward Artificial N2 Fixation to NH3 under Ambient Conditions[J]. J Mater Chem A,2018,6(36):17303-17306. [20] Zhang Y,Qiu W,Ma Y,et al. High-performance Electrohydrogenation of N2 to NH3 Catalyzed by Multishelled Hollow Cr2O3 Microspheres under Ambient Conditions[J]. ACS Catal,2018,8(9):8540-8544. [21] Han J,Liu Z,Ma Y,et al. Ambient N2 Fixation to NH3 at Ambient Conditions:Using Nb2O5 Nanofiber as a High-performance Electrocatalyst[J]. Nano Energy,2018,52:264-270. [22] Hu L,Khaniya A,Wang J,et al. Ambient Electrochemical Ammonia Synthesis with High Selectivity on Fe/Fe Oxide Catalyst[J]. ACS Catal,2018,8(10):9312-9319. [23] Zhao H,Zhang D,Wang Z,et al. High-Performance Nitrogen Electroreduction at Low Overpotential byIintroducing Pb to Pd Nanosponges[J]. Appl Catal B,2020,265:118481. [24] Wu T,Kong W,Zhang Y,et al. Greatly Enhanced Electrocatalytic N2 Reduction on TiO2 via V Doping[J]. Small Methods,2019,3(11):1900356(1-8). [25] Cherkasov N,Ibhadon A O,Fitzpatrick P. A Review of the Existing and Alternative Methods for Greener Nitrogen Fixation[J]. Chem Eng Process,2015,90:24-33. [26] CHEN Si,SUN Lizhen,SHU Xinxin,et al. Graphene-Based Catalysts for Efficient Electrocatalysitc Application[J]. Chinese J Appl Chem,2018,35(3):272-285(in Chinese). 陈思,孙立臻,舒欣欣,等. 石墨烯基催化剂的设计合成与电催化应用[J]. 应用化学,2018,35(3):272-285. [27] Tang C,Qiao S Z. How to Explore Ambient Electrocatalytic Nitrogen Reduction Reliably and Insightfully[J]. Chem Soc Rev,2019,48(12):3166-3180. [28] Mukherjee S,Cullen D A,Karakalos S,et al. Metal-Organic Framework-Derived Nitrogen-Doped Highly Disordered Carbon for Electrochemical Ammonia Synthesis Using N2 and H2O in Alkaline Electrolytes[J]. Nano Energy,2018,48:217-226. [29] Feng J,Zhu X,Chen Q,et al. Ultrasmall V8C7 Nanoparticles Embedded in Conductive Carbon for Efficient Electrocatalytic N2 Reduction toward Ambient NH3 Production[J]. J Mater Chem A,2019,7(46):26227-26230. [30] Li S J,Bao D,Shi M M,et al. Amorphizing of Au Nanoparticles by CeOx RGO Hybrid Support towards Highly Efficient Electrocatalyst for N2 Reduction under Ambient Conditions[J]. Adv Mater,2017,29(33):1700001(1-6). [31] Chen S,Perathoner S,Ampelli C,et al. Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbon-nanotube-based Electrocatalyst[J]. Angew Chem Int Ed,2017,56(10):2699-2703. [32] Abghoui Y,Garden A L,Howalt J G,et al. Electroreduction of N2 to Ammonia at Ambient Conditions on Mononitrides of Zr, Nb, Cr, and V:A DFT Guide for Experiments[J]. ACS Catal,2016,6(2):635-646. [33] Yang X,Nash J,Anibal J,et al. Mechanistic Insights into Electrochemical Nitrogen Reduction Reaction on Vanadium Nitride Nanoparticles[J]. J Am Chem Soc,2018,140(41):13387-13391. |