[1] Xie X,Li Y,Liu Z Q,et al. Low-temperature Oxidation of CO Catalysed by Co3O4 Nanorods[J]. Nature,2009,458(7239):746-749.[2] Wang R,He H,Wang J,et al. Shape-regulation:An Effective Way to Control CO Oxidation Activity over Noble Metal Catalysts[J]. Catal Today,2013,201:68-78.[3] Chang S,Li M,Hua Q,et al. Shape-dependent Interplay Between Oxygen Vacancies and Ag CeO2 Interaction in Ag/CeO2 Catalysts and Their Influence on the Catalytic Activity[J]. J Catal,2012,293:195-204.[4] Domingos D,Simplicio L M T,Estrela G S,et al. Catalytic Combustion of Methane over PdO-CeO2/Al2O3 and PdO-CeO2/ZrO2 Catalysts. In Natural Gas Conversion Ⅷ, Proceedings of the 8th Natural Gas Conversion Symposium, Noronha F B,Schmal M,SousaAguiar E F,Eds. Amsterdam:Elsevier Science Bv,2007,167:7-12.[5] Müller C A,Maciejewski M,Koeppel R A,et al. Combustion of Methane over Palladium/Zirconia:Effect of Pd-Particle Size and Role of Lattice Oxygen[J]. Catal Today,1999,47(1-4):245-252.[6] Gallino F,Di Valentin C,Pacchioni G. Band Gap Engineering of Bulk ZrO2 by Ti Doping[J]. Phys Chem Chem Phys,2011,13(39):17667-17675.[7] Salavati-Niasari M,Dadkhah M,Davar F. Synthesis and Characterization of Pure Cubic Zirconium Oxide Nanocrystals by Decomposition of Bis-aqua, Tris-acetylacetonato Zirconium(Ⅳ) Nitrate as New Precursor Complex[J]. Inorg Chim Acta,2009,362(11):3969-3974.[8] Pocoroba E,Pettersson L J,Agrell J,et al. Exhaust Gas Catalysts for Heavy-duty Applications:Influence of the Pd Particle Size and Particle Size Distribution on the Combustion of Natural Gas and Biogas[J]. Top Catal,2001,16(1-4):407-412.[9] Yoshida H,Nakajima T,Yazawa Y,et al. Support Effect on Methane Combustion over Palladium Catalysts[J]. Appl Catal B,2007,71(1/2):70-79.[10] Ciuparu D,Pfefferle L. Support and Water Effects on Palladium Based Methane Combustion Catalysts[J]. Appl Catal A,2001,209(1/2):415-428.[11] van Vegten N,Maciejewski M,Krumeich F,et al. Structural Properties, Redox Behaviour and Methane Combustion Activity of Differently Supported Flame-made Pd Catalysts[J]. Appl Catal B,2009,93(1/2):38-49.[12] Carstens J N,Su S C,Bell A T. Factors Affecting the Catalytic Activity of Pd/ZrO2 for the Combustion of Methane[J]. J Catal,1998,176(1):136-142.[13] Yang L F,Hu Y X,Jin D,et al. Effect of Support Structure on Methane Combustion over PdO/ZrO2:in Natural Gas Conversion Ⅶ[M]. Bao X,Xu Y,Eds. Amsterdam:Elsevier Science Bv,2004,147:469-474.[14] Sekizawa K,Widjaja H,Maeda S,et al. Low Temperature Oxidation of Methane over Pd Catalyst Supported on Metal Oxides[J]. Catal Today,2000,59(1/2):69-74.[15] Heo I,Yoon D Y,Cho B K,et al. Activity and Thermal Stability of Rh-Based Catalytic System for an Advanced Modern TWC[J]. Appl Catal B,2012,121/122:75-87.[16] Li W,Huang H,Li H,et al. Facile Synthesis of Pure Monoclinic and Tetragonal Zirconia Nanoparticles and Their Phase Effects on the Behavior of Supported Molybdena Catalysts for Methanol-Selective Oxidation[J]. Langmuir,2008,24(15):8358-8366.[17] Zhao Y,Tao K,Wan H L. Effect of Zirconia Phase on the Reduction Behaviour of Highly Dispersed Zirconia-supported Copper Oxide[J]. Catal Commun,2004,5(5):249-252.[18] Li J,Chen J,Song W,et al. Influence of Zirconia Crystal Phase on the Catalytic Performance of Au/ZrO2 Catalysts for Low-temperature Water Gas Shift Reaction[J]. Appl Catal A,2008,334(1/2):321-329.[19] Zhang X,Wang H,Xu B Q. Remarkable Nanosize Effect of Zirconia in Au/ZrO2 Catalyst for CO Oxidation[J]. J Phys Chem B,2005,109(19):9678-9683.[20] Ruiz J A C,Oliveira E C,Fraga M A,et al. Performance of Pd Supported on Mesoporous Molecular Sieves on Methane Combustion[J]. Catal Commun,2012,25:1-6.[21] Cargnello M,Jaén J J D,Garrido J C H,et al. Exceptional Activity for Methane Combustion over Modular Pd@CeO2 Subunits on Functionalized Al2O3[J]. Science,2012,337(6095):713-717. |