
Chinese Journal of Applied Chemistry ›› 2025, Vol. 42 ›› Issue (4): 466-479.DOI: 10.19894/j.issn.1000-0518.240377
• Review • Previous Articles
Hui LI, Zhi-Zhong XIE(), Ji FENG
Received:
2024-11-20
Accepted:
2025-03-10
Published:
2025-04-01
Online:
2025-05-14
Contact:
Zhi-Zhong XIE
Supported by:
CLC Number:
Hui LI, Zhi-Zhong XIE, Ji FENG. Research Progress on the Hydrolysis-Polymerization Forms and Mechanisms of Aluminum[J]. Chinese Journal of Applied Chemistry, 2025, 42(4): 466-479.
Balanced reaction | pKa |
---|---|
Al3++H2O=Al(OH)2++H+ | 5.0 |
Al(OH)2++H2O=Al(OH) | 5.5 |
Al(OH) | 6.0 |
Al(OH)3+H2O=Al(OH) | 8.5 |
Table 1 Aluminum ion hydrolysis acid dissociation constant[16]
Balanced reaction | pKa |
---|---|
Al3++H2O=Al(OH)2++H+ | 5.0 |
Al(OH)2++H2O=Al(OH) | 5.5 |
Al(OH) | 6.0 |
Al(OH)3+H2O=Al(OH) | 8.5 |
Aluminum species | Molecular formula | Ion peak (m/z) |
---|---|---|
Al1 | Al(OH) | 79,97 |
Al2 | Al2O2(OH)+(H2O)1-6 | 103,121,139,157,175,193,211,229,247 |
Al3 | Al3O | 163,181,199,217,235,253,271 |
Al | Al13O18(OH) | 213,219,225,231,237,243,249,255,261,267,279 |
Al | Al13O18(OH) | 328,337,346,355,364,373,382,391,400,409 |
Table 2 The aluminum species and their corresponding ion peaks in the ESI-MS spectra of aluminum hydrolysis in PAC solutions[53]
Aluminum species | Molecular formula | Ion peak (m/z) |
---|---|---|
Al1 | Al(OH) | 79,97 |
Al2 | Al2O2(OH)+(H2O)1-6 | 103,121,139,157,175,193,211,229,247 |
Al3 | Al3O | 163,181,199,217,235,253,271 |
Al | Al13O18(OH) | 213,219,225,231,237,243,249,255,261,267,279 |
Al | Al13O18(OH) | 328,337,346,355,364,373,382,391,400,409 |
Analytical methods | Advantage | Malpractices |
---|---|---|
Al-Ferron colorimetry[ | It can detect the aluminum form at low aluminum concentration; Low cost; The aluminum form can be distinguished by the reaction rate of the reagent. | It is not possible to accurately and qualitatively identify the type of aluminum. |
27Al NMR[ | It can quantitatively detect the form of aluminum; Fast, non-destructive, and accurate, suitable for solid and liquid samples. | At low Alb concentrations, Al13 could not be detected. Larger aluminum polymers are difficult to detect. |
ESI-MS[ | At low concentrations, it can qualitatively and quantitatively detect a variety of aluminum forms. | The solution cannot be reacted in situ form. |
Table 3 Comparison of three analytical methods for aluminum species
Analytical methods | Advantage | Malpractices |
---|---|---|
Al-Ferron colorimetry[ | It can detect the aluminum form at low aluminum concentration; Low cost; The aluminum form can be distinguished by the reaction rate of the reagent. | It is not possible to accurately and qualitatively identify the type of aluminum. |
27Al NMR[ | It can quantitatively detect the form of aluminum; Fast, non-destructive, and accurate, suitable for solid and liquid samples. | At low Alb concentrations, Al13 could not be detected. Larger aluminum polymers are difficult to detect. |
ESI-MS[ | At low concentrations, it can qualitatively and quantitatively detect a variety of aluminum forms. | The solution cannot be reacted in situ form. |
1 | BI S P, YANG X D, ZHANG F P, et al. Analytical methodologies for aluminium speciation in environmental and biological samples-a review[J]. Fresenius J Anal Chem, 2001, 370: 984-996. |
2 | CARDONA Y, KORILI S A, GIL A. Understanding the formation of Al13 and Al30 polycations to the development of microporous materials based on Al13- and Al30-PILC montmorillonites: a review[J]. Appl Clay Sci, 2021, 203: 105996. |
3 | ZHOU Y Y, ZHANG D W, ZHANG G S, et al. Enhanced coagulation for algae removal using composite Al-based coagulants: collaborative optimization mechanism of aluminum morphology[J]. Coatings, 2024, 14(7): 857. |
4 | ACEMAN S, LAHAV N, YARIV S. A thermo-XRD study of Al-pillared smectites differing in source of charge, obtained in dialyzed, non-dialyzed and washed systems[J]. Appl Clay Sci, 2000, 17(3/4): 99-126. |
5 | WEN K, WEI J M, HE H P, et al. Keggin-Al30: an intercalant for Keggin-Al30 pillared montmorillonite[J]. Appl Clay Sci, 2019, 180: 105203. |
6 | ANGEL B M, APTE S C, BATLEY G E, et al. Geochemical controls on aluminium concentrations in coastal waters[J]. Environ Chem, 2015, 13(1): 111-118. |
7 | SHIRASAKI N, MATSUSHITA T, MATSUI Y, et al. Assessment of the efficacy of membrane filtration processes to remove human enteric viruses and the suitability of bacteriophages and a plant virus as surrogates for those viruses[J]. Water Res, 2017, 115: 29-39. |
8 | EBRAHIMI A, HAGHIGHI M, AGHAMOHAMMADI S. Single vs. dual-binder surface design of spray-dried Si-Al-sol-bound kaolin-matrixed SAPO-34 nanocatalyst for conversion of methanol to light-olefins in fluidized bed reactor[J]. Microporous Mesoporous Mater, 2022, 332: 111714. |
9 | GAO T T, TIAN P, XU Q J, et al. Coating effect of various-phase alumina nanoparticles on NCM811 cathode for enhancing electrochemical performance of lithium-ion batteries[J]. ACS Appl Energy Mater, 2024, 7(9): 3904-3915. |
10 | JIANG J Q. Development of coagulation theory and pre-polymerized coagulants for water treatment[J]. Sep Purif Methods, 2001, 30(1): 127-141. |
11 | DUAN J M, GREGORY J. Coagulation by hydrolysing metal salts[J]. Adv Colloid Interface Sci, 2003, 100: 475-502. |
12 | HSU P H, RICH C. Aluminum fixation in a synthetic cation exchanger[J]. Soil Sci Soc Am J, 1960, 24(1): 21-25. |
13 | HSU P H, BATES T F. Formation of X-ray amorphous and crystalline aluminium hydroxides1[J]. Miner Mag, 1964, 33(264): 749-768. |
14 | TIAN C H, FENG C H, WANG Q X. The identification of Al nanoclusters by electrospray ionization mass spectrometry (ESI-MS)[J]. Sci Total Environ, 2021, 754: 142154. |
15 | 栾兆坤. 水中铝的形态及其形态研究方法[J]. 环境化学, 1987, 6(1): 46-56. |
LUAN Z K. The speciation of aluminium in water and its research methods[J]. Environ Chem, 1987, 6(1): 46-56. | |
16 | 栾兆坤. 铝的水化反应及其形态组成[J]. 环境科学丛刊, 1987(2): 1-10. |
LUAN Z K. Hydration reaction of aluminum and its morphological composition[J]. Environ Sci Series, 1987(2): 1-10. | |
17 | 黄莫霆. 新型无碱速凝剂的制备与性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
HUANG M T. Research on the preparation and properties of new type of alkali-free accelerators[D]. Harbin: Harbin Institute of Technology, 2020. | |
18 | 林波, 张志强, 杨育星. 聚合铝水解聚合形态分布的影响因素研究[J]. 贵州环保科技, 2004, 10(4): 12-15. |
LIN B, ZHANG Z Q, YANG Y X. Study on the influencing factors of the hydrolysis and polymerization morphology distribution of poly aluminum chloride[J]. Guizhou Environ Prot Sci Technol, 2004, 10(4): 12-15. | |
19 | BROSSET C, BIEDERMANN G, SILLEN L G. Studies on the hydrolysis of metal ions[J]. Acta Chem Scand, 1954, 8(10): 1917-1926. |
20 | AKITT J, FARTHING A. Aluminium-27 nuclear magnetic resonance studies of the hydrolysis of aluminium(Ⅲ). Part 4. hydrolysis using sodium carbonate[J]. J Chem Soc, Dalton Trans, 1981(7): 1617-1623. |
21 | RAUSCH W V, BALE H D. Small-angle X‐ray scattering from hydrolyzed aluminum nitrate solutions[J]. J Chem Phys, 1964, 40(11): 3391-3394. |
22 | SILLÉN L G. Quantitative studies of hydrolytic equilibria[J]. Q Rev, Chem Soc, 1959, 13(2): 146-168. |
23 | MATIJEVIĆ E, STRYKER L J. Coagulation and reversal of charge of lyophobic colloids by hydrolyzed metal ions:Ⅲ. aluminum sulfate[J]. J Colloid Interface Sci, 1966, 22(1): 68-77. |
24 | TURNER R. Three forms of aluminium in aqueous systems determined by 8-quinolinolate extraction methods[J]. Can J Chem, 1969, 47(14): 2521-2527. |
25 | VERMEULEN A C, GEUS J W, STOL R, et al. Hydrolysis-precipitation studies of aluminum(Ⅲ) solutions.Ⅰ. titration of acidified aluminum nitrate solutions[J]. J Colloid Interface Sci, 1975, 51: 449-458. |
26 | 胡芳. 铝盐絮凝剂水解聚合形态的研究进展[J]. 造纸科学与技术, 2007(3): 36-40. |
HU F. Research progress on the hydrolysis and polymerization morphologies of aluminum salt flocculants[J]. Paper Sci Technol, 2007(3): 36-40. | |
27 | SMITH R W, HEM J D. Effect of aging on aluminum hydroxide complexes in dilute aqueous solutions[M]. US Govet Print Off, 1972, 1827-D. |
28 | 王趁义, 张彩华, 毕树平, 等. Al-Ferron逐时络合比色光度法测定聚合铝溶液中Ala, Alb和Alc三种铝形态的时间界限研究[J]. 光谱学与光谱分析, 2005, 25(2): 252-256. |
WANG C Y, ZHANG C H, BI S P, et al. Research on the time limits for determining three aluminum species (Ala, Alb and Alc) in poly aluminum chloride solutions by the Al-Ferron time-sequence complexation colorimetric photometry method[J]. Spectrosc Spectral Anal, 2005, 25(2): 252-256. | |
29 | JARDINE P M, ZELAZNY L W. Mononuclear and polynuclear aluminum speciation through differential kinetic reactions with ferron[J]. Soil Sci Soc Am J, 1986, 50(4): 895-900. |
30 | CHANGUI C, STONE W E, VIELVOYE L, et al. Characterization by nuclear magnetic resonance spectroscopy, ferron assay, and acidification of partially neutralized aluminium solutions[J]. J Chem Soc, Dalton Trans, 1990(5): 1723-1726. |
31 | BERTSCH P M, BARNHISEL R I, THOMAS G W, et al. Quantitative determination of aluminum-27 by high-resolution nuclear magnetic resonance spectrometry[J]. Anal Chem, 1986, 58(12): 2583-2585.. |
32 | PARKER D R, BERTSCH P M. Identification and quantification of the “Al13” tridecameric aluminum polycation using ferron[J]. Environ Sci Technol, 1992, 26(5): 908-914. |
33 | WU Z, ZHANG X, ZHOU C J, et al. A comparative study on the characteristics and coagulation mechanism of PAC-Al13 and PAC-Al30[J]. RSC Adv, 2016, 6(110): 108369-108374. |
34 | KONG Y L, MA Y Q, HUANG Z Y, et al. Characteristics and mechanisms of aluminum salts on arsenate removal by coagulation: significance of aluminum speciation distribution and transformation[J]. J Environ Chem Eng, 2022, 10(1): 106805. |
35 | HAOUAS M, TAULELLE F, MARTINEAU C. Recent advances in application of 27Al NMR spectroscopy to materials science[J]. Prog Nucl Magn Reson Spectrosc, 2016, 94: 11-36. |
36 | AKITT J W. Multinuclear studies of aluminium compounds[J]. Pro Nucl Magn Reson Spectrosc, 1989, 21(1/2): 1-149. |
37 | JACKSON M N, KAMUNDE-DEVONISH M K, HAMMANN B A, et al. An overview of selected current approaches to the characterization of aqueous inorganic clusters[J]. Dalton Trans, 2015, 44(39): 16982-17006. |
38 | MARTINEAU C. NMR crystallography: applications to inorganic materials[J]. Solid State Nucl Magn Reson, 2014, 63: 1-12. |
39 | MARTINEAU C, SENKER J, TAULELLE F. NMR crystallography[J]. Annu Rep NMR Spectrosc, 2014, 82: 1-57. |
40 | AKITT J W, GREENWOOD N N, KHANDELWAL B L, et al. 27Al nuclear magnetic resonance studies of the hydrolysis and polymerisation of the hexa-aquo-aluminium (Ⅲ) cation[J]. J Chem Soc, Dalton Trans, 1972(5): 604-610. |
41 | AKITT J W, FARTHING A. New 27Al NMR studies of the hydrolysis of the aluminum (Ⅲ) cation[J]. J Magn Reson (1969), 1978, 32(3): 345-352. |
42 | BOTTERO J Y, CASES J, FIESSINGER F, et al. Studies of hydrolyzed aluminum chloride solutions. 1. nature of aluminum species and composition of aqueous solutions[J]. J Phys Chem, 1980, 84(22): 2933- 2939. |
43 | PARKER D R, BERTSCH P M. Formation of the “Al13” tridecameric aluminum polycation under diverse synthesis conditions[J]. Environ Sci Technol, 1992, 26(5): 914-921. |
44 | ALLOUCHE L, TAULELLE F. Conversion of Al13 Keggin ε into Al30: a reaction controlled by aluminum monomers[J]. Inorg Chem Commun, 2003, 6(9): 1167-1170. |
45 | CHEN Z Y, LIU C J, LUAN Z K, et al. Effect of total aluminum concentration on the formation and transformation of nanosized Al13 and Al30 in hydrolytic polymeric aluminum aqueous solutions[J]. Chin Sci Bull, 2005, 50: 2010-2015. |
46 | FU G, NAZAR L F, BAIN A D. Aging processes of alumina sol-gels: characterization of new aluminum polyoxycations by aluminum-27 NMR spectroscopy[J]. Chem Mater, 1991, 3(4): 602-610. |
47 | ALLOUCHE L, GÉRARDIN C, LOISEAU T, et al. Al30: a giant aluminum polycation[J]. Angew Chem Int Ed, 2000, 112(3): 521-524. |
48 | BERGER S, NOLDE J, YÜKSEL T, et al. 27Al NMR study of the pH dependent hydrolysis products of Al2(SO4)3 in different physiological media[J]. Molecules, 2018, 23(4): 808. |
49 | KEBARLE P, VERKERK U H. On the mechanism of electrospray ionization mass spectrometry (ESIMS)[M]. Electrospray and MALDI Mass Spectrometry Wiley Online Libray, 2010: 1-48. |
50 | SARPOLA A, HIETAPELTO V, JALONEN J, et al. Identification of the hydrolysis products of AlCl3·6H2O by electrospray ionization mass spectrometry[J]. J Mass Spectrom, 2004, 39(4): 423-430. |
51 | SARPOLA A, HIETAPELTO V, JALONEN J, et al. Identification and fragmentation of hydrolyzed aluminum species by electrospray ionization tandem mass spectrometry[J]. J Mass Spectrom, 2004, 39(10): 1209-1218. |
52 | FENG C H, BI Z, ZHAO S, et al. Quantification analysis of polymeric Al species in solutions with electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS)[J]. Int J Mass Spectrom, 2012, 309: 22-29. |
53 | FENG C H, BI Z, TANG H X. Electrospray ionization time-of-flight mass spectrum analysis method of polyaluminum chloride flocculants[J]. Environ Sci Technol, 2015, 49(1): 474-480. |
54 | SONG J, JIN P K, JIN X, et al. Synergistic effects of various in situ hydrolyzed aluminum species for the removal of humic acid[J]. Water Res, 2019, 148: 106-114. |
55 | TIAN C H, WU Y H, WEI M Z, et al. A novel understanding of residual nano-Al13 formation and degradation during coagulation and flocculation: a proof based on ESI-TOF-MS[J]. Environ Sci: Nano, 2018, 5(11): 2712-2721. |
56 | AN G Y, YUE Y, YANG L, et al. Decomposition of Al13 promoted by salicylic acid under acidic condition: mechanism study by differential mass spectrometry method and DFT calculation[J]. J Environ Sci, 2023, 126: 423-433. |
57 | ZHOU W Z, GAO B Y, YUE Q Y, et al. Al-Ferron kinetics and quantitative calculation of Al(Ⅲ) species in polyaluminum chloride coagulants[J]. Colloids Surf A, 2006, 278(1/2/3): 235-240. |
58 | GRAHAM T R, CHUN J, SCHENTER G K, et al. 27Al NMR diffusometry of Al13 Keggin nanoclusters[J]. Magn Reson Chem, 2022, 60(2): 226-238. |
59 | HUANG C Y, LEE H Y, CHANG Y C, et al. 27Al NMR insight into the phase transition in BaFe2Al9[J]. Phys Rev B, 2022, 106: 195101. |
60 | ZHAO H, LIU H J, QU J H. Aluminum speciation of coagulants with low concentration: analysis by electrospray ionization mass spectrometry[J]. Colloids Surf A, 2011, 379(1/2/3): 43-50. |
61 | BROSSET C. On the reactions of the aluminium ion with water[J]. Acta Chem Scand, 1952, 6: 910-940. |
62 | SILLÉN L G, HIETALA S, SÖRENSEN N A. On equilibria in systems with polynuclear complex formation: I. methods for deducing the composition of the complexes from experimental data,“core+links” complexes[J]. Acta Chem Scand, 1954, 8(299): 195. |
63 | JOHANSSON G, GULLMAN L O, KJEKSHUS A, et al. On the crystal structure of some basic aluminium salts[J]. Acta Chem Scand, 1960, 14: 771-773. |
64 | JOHANSSON G, DORM E, SELEBORG M, et al. The crystal structures of [Al2(OH)2(H2O)8](SO4)2·2H2O and [Al2(OH)2(H2O)8](SeO4)2·2H2O[J]. Acta Chem Scand, 1962, 16: 403-420. |
65 | JOHANSSON G. On the crystal structure of the basic sulfate 13Al2O3·6SO4·xH2O[J]. Ark Kemi, 1963, 20: 321-342. |
66 | BOTTERO J Y, AXELOS M, TCHOUBAR D, et al. Mechanism of formation of aluminum trihydroxide from Keggin Al13 polymers[J]. J Colloid Interface Sci, 1987, 117(1): 47-57. |
67 | SCHUTZ A, STONE W, PONCELET G, et al. Preparation and characterization of bidimensional zeolitic structures obtained from synthetic beidellite and hydroxy-aluminum solutions[J]. Clays Clay Miner, 1987, 35(4): 251-261. |
68 | HEM J, ROBERSON C. Form and stability of aluminium hydroxide complexes in dilute solution[J]. Geol Surv Water-Supply Pap.(US); (United States), 1967: 1827-A. |
69 | BI S P, WANG C Y, CAO Q, et al. Studies on the mechanism of hydrolysis and polymerization of aluminum salts in aqueous solution: correlations between the “Core-links” model and “Cage-like” Keggin-Al13 model[J]. Coord Chem Rev, 2004, 248(5/6): 441-455. |
70 | STOL R V, VAN HELDEN A, DE BRUYN P. Hydrolysis-precipitation studies of aluminum(Ⅲ) solutions. 2. a kinetic study and model[J]. J Colloid Interface Sci, 1976, 57(1): 115-131. |
71 | LETTERMAN R D, ASOLEKAR S R. Surface ionization of polynuclear species in Al(Ⅲ) hydrolysis-I. titration results[J]. Water Res, 1990, 24(8): 931-939. |
72 | QU S S, ZHANG J, XIANG Y, et al. Enhanced hydrophilic organic matter removal ability of Al13 in the presence of organic matters under modified MWCNTs′ assistance[J]. Sep Purif Technol, 2024, 336: 126264. |
73 | SONG J, JIN P K, JIN X, et al. Synergistic effects of various in situ hydrolyzed aluminum species for the removal of humic acid[J]. Water Res, 2019, 148: 106-114. |
74 | GAO B Y, YUE Q Y, WANG B J. The chemical species distribution and transformation of polyaluminum silicate chloride coagulant[J]. Chemosphere, 2002, 46(6): 809-813. |
75 | ZHANG W J, TANG M Y, LI D D, et al. Effects of alkalinity on interaction between EPS and hydroxy-aluminum with different speciation in wastewater sludge conditioning with aluminum based inorganic polymer flocculant[J]. J Environ Sci, 2021, 100: 257-268. |
76 | YAN M Q, WANG D S, YU J F, et al. Enhanced coagulation with polyaluminum chlorides: role of pH/alkalinity and speciation[J]. Chemosphere, 2008, 71(9): 1665-1673. |
77 | CHEN Z Y, LUAN Z K, FAN J H, et al. Effect of thermal treatment on the formation and transformation of Keggin Al13 and Al30 species in hydrolytic polymeric aluminum solutions[J]. Colloids Surf A, 2007, 292(2/3): 110-118. |
78 | LIU L B, LU S, AN G Y, et al. Historical development of Al30 highlighting the unique characteristics and application in water treatment: a review[J]. Coord Chem Rev, 2022, 473: 214807. |
79 | 汤鸿霄. 羟基聚合氯化铝的絮凝形态学[J]. 环境科学学报, 1998, 18(1): 1-10. |
TANG H X. Flocculation morphology of hydroxyl poly aluminum chloride[J]. Acta Sci Circumstantiae, 1998, 18(1): 1-10. | |
80 | AKITT J W, FARTHING A. Hydrolysis of hexa-aqua-aluminium(Ⅲ) in organic media[J]. J Chem Soc, Dalton Trans, 1981(5): 1233-1234. |
81 | BERTSCH P M. Conditions for Al13 polymer formation in partially neutralized aluminum solutions[J]. Soil Sci Soc Am J, 1987, 51(3): 825-828. |
82 | CHEN Z Y, LUAN Z K, JIA Z P, et al. Study on the hydrolysis/precipitation behavior of Keggin Al13 and Al30 polymers in polyaluminum solutions[J]. J Environ Manage, 2009, 90(8): 2831-2841. |
83 | GUO T T, CHEN R X, ZHANG X Z, et al. Stability, morphological transformation and flocculability investigation of planar tridecameric Al13(OH)24(H2O) 24 15 + [J]. Sep Purif Technol, 2017, 184: 288-297. |
84 | HUANG X J, CHEN K Y, ZHANG Z Q, et al. Study on the hydrolysis characteristics of polymeric aluminum chloride forced by fine bubbles and its key factors affecting the efficiency and capacity of forcing hydrolysis[J]. Water Res, 2024, 268: 122757. |
85 | CHEN Z Y, FAN B, PENG X J, et al. Evaluation of Al polynuclear species in polyaluminum solutions as coagulant for water treatment[J]. Chemosphere, 2006, 64(6): 912-918. |
86 | WANG P, JIAO R Y, LIU L B, et al. Optimized coagulation pathway of Al13: effect of in-situ aggregation of Al13[J]. Chemosphere, 2019, 230: 76-83. |
87 | AKITT J W, FARTHING A. Aluminium-27 nuclear magnetic resonance studies of the hydrolysis of aluminium(Ⅲ). Part 5. slow hydrolysis using aluminium metal[J]. J Chem Soc, Dalton Trans, 1981(7): 1624-1628. |
88 | ROWSELL J, NAZAR L. Speciation and thermal transformation in alumina sols: structures of the polyhydroxyoxoaluminum cluster [Al30O8(OH)56(H2O)26]18+ and its δ-Keggin moieté[J]. J Am Chem Soc, 2000, 122(15): 3777-3778. |
89 | PHILLIPS B L, LEE A, CASEY W H. Rates of oxygen exchange between the Al2O8Al28(OH)56(H2O) 26 18 + (aq)(Al30) molecule and aqueous solution[J]. Geochim Cosmochim Acta, 2003, 67(15): 2725-2733. |
90 | YANG W J, QIAN Z S, LU B M, et al. Density functional theory study and kinetic analysis of the formation mechanism of Al30O8(OH)56(H2O) 26 18 + (Al30) in aqueous solution[J]. Geochim Cosmochim Acta, 2010, 74(4): 1220-1229. |
91 | YE C Q, BI Z, WANG D S. Formation of Al30 from aqueous polyaluminum chloride under high temperature: role of Al13 aggregates[J]. Colloids Surf A, 2013, 436: 782-786. |
92 | 徐绪筝, 迟娟, 吕敏, 等. 纳米Al30混凝剂的制备及混凝性能研究[J]. 广东化工, 2018, 45(9): 93-95. |
XU X Z, CHI J, LV M, et al. Study on the preparation and coagulation performance of nano Al30 coagulant[J]. Guangdong Chem Ind, 2018, 45(9): 93-95. | |
93 | LIU L B, YANG Q X, WANG P, et al. Efficient purification of Al30 by organic complexation method[J]. J Environ Sci, 2019, 80: 240-247. |
94 | LIU L B, LU S, DEMISSIE H, et al. Formation of Al30 aggregates and its correlation to the coagulation effect[J]. Chemosphere, 2021, 278: 130493. |
[1] | Yang PAN, Hui-Ling LU, Hao LI, Jian-Ming PAN. Research Progress in Preparation and Application of Precious Metal Ion-Imprinted Polymers [J]. Chinese Journal of Applied Chemistry, 2023, 40(10): 1359-1375. |
[2] | Yu-Feng ZHOU, Chuan-Wei ZHOU, Tong-Ze HU, Zhan-Peng DUAN, Hao-Tong WANG, Shu-Yun SHI. Synthesis of Fe/V‑Sb2O3 Composites and UV‑light Catalytic Degradation of Pharmaceutical Wastewater [J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1572-1578. |
[3] | He-Chang SHI, Yan-Cun YU, Chang-Yu HAN. Morphology, Rheological and Mechanical Properties of Polyethylene/Aluminium Oxide Composites [J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1593-1599. |
[4] | XU Feng, ZHANG Kun, YIN Feng-Qin, XU Fei, PANG Yu-Xuan, CHEN Shi-Ting. Research Progress in Preparation and Application of Anion Imprinted Polymers [J]. Chinese Journal of Applied Chemistry, 2021, 38(2): 123-135. |
[5] | TAN Funeng1*, HE Yuanyuan2, SUI Weiping3. Preparation and Drug Release Behavior of Interpenetrating Polymer Network Hydrogel of Polyethylene Glycol and (2-Hydroxy-3-butoxy)propyl Hydroxypropyl Chitosan [J]. Chinese Journal of Applied Chemistry, 2014, 31(12): 1399-1404. |
[6] | WU Zhongzheng, ZHU Weiju, WANG Dongmei, LI Cun*, WU Zhenyu. Preparation of Copper Oxide-Silica Porous Composites and Its Adsorption of Methylene Blue [J]. Chinese Journal of Applied Chemistry, 2014, 31(09): 1089-1095. |
[7] | ZHANG Zhihui1,2, HE Junhui1*, YANG Qiaowen2. Surfactant-assisted Preparation of Mechanically Durable Superhydrophilic Antireflective Silica Nanoparticle Coatings by Acid Catalyzed Sol-Gel Process [J]. Chinese Journal of Applied Chemistry, 2013, 30(07): 794-800. |
[8] | YE Wenbo1,2, HUANG Shijun1,2, GUAN Huaimin1,2, TONG Yuejin2,3*. Preparation and Propoties of the Superhydrophobic Polysiloxane Coatings [J]. Chinese Journal of Applied Chemistry, 2012, 29(10): 1123-1129. |
[9] | ZHU Weiju, GAO Hua, LI Cun*, WU Zhenyu, FANG Min. Preparation and Adsorption Activities of Attapulgite Modified by Amino-silane Coupling Agent [J]. Chinese Journal of Applied Chemistry, 2012, 29(02): 180-185. |
[10] | ZHANG Xing, ZHENG Yuying*, CHEN Dexian. Preparation of Micrometer Core-shell Composite Particles via Dispersion Polymerization [J]. Chinese Journal of Applied Chemistry, 2012, 29(01): 37-40. |
[11] | MOU Shaoyan, LU Yao*, HUANG Xiaoyi. Micro-fabrication Coating of Nano-SiO2 Microspheres on Melamine-Formaldehyde Resin [J]. Chinese Journal of Applied Chemistry, 2011, 28(12): 1456-1458. |
[12] | WANG Jiu-Si*, HE Zhao-Zhao, GUO Li-Xin, WEN Zhuo-Qiong, YANG Yu-Hua. Preparation of Composite Flocculant (Polyferric Silicate Sulfate and Chitosan) and Its Application in Wastewater Treatment [J]. Chinese Journal of Applied Chemistry, 2011, 28(01): 27-32. |
[13] | MENG Guan-Hua*, OU Cheng-Hui, TAO Dong-Min, LIU Bao-He. Study on Adsorption of Copper Ions onto Amine Acid Chelated Adsorption Resin [J]. Chinese Journal of Applied Chemistry, 2009, 26(12): 1450-1455. |
[14] | ZHAO Ben-An, LI Hui, LIU Gang, WANG Ji-De, YUE Fan*. Synthesis and Characterization of a New 1-D Zinc(Ⅱ) Dicarboxylate with Terpyridine-Like Chelates [J]. Chinese Journal of Applied Chemistry, 2009, 26(12): 1435-1438. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 25
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 36
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||