Chinese Journal of Applied Chemistry ›› 2024, Vol. 41 ›› Issue (10): 1381-1398.DOI: 10.19894/j.issn.1000-0518.240125
• Review •
Xiao-Ying YANG1, Bao-Hua ZHANG1, Ye-Ying LAN1, Yu-Wei ZHANG1,2()
Received:
2024-04-15
Accepted:
2024-08-20
Published:
2024-10-01
Online:
2024-10-29
Contact:
Yu-Wei ZHANG
About author:
ywzhang@scnu.edu.cnSupported by:
CLC Number:
Xiao-Ying YANG, Bao-Hua ZHANG, Ye-Ying LAN, Yu-Wei ZHANG. Research Progress of Carbon Based Composite Bipolar Plate Materials for Redox Flow Batteries[J]. Chinese Journal of Applied Chemistry, 2024, 41(10): 1381-1398.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.240125
Fig.6 Electrical conductivity of the composites. Effect on (A) major filler types versus total filler contents, in which minor filler contents were fixed to 6%, and (B) minor filler types versus total filler contents (KB: ketjenblack carbon)[36]
Fig.10 (A) Cycling performance of a VRFB single cell equipped with current collectors of the PP-elastomer/PP/carbon black/carbon fiber composite at a current density of 70 mA/cm2; (B) Cycling performance of a VRFB cell stack equipped with current collectors of the PP-elastomer/PP/carbon black/carbon fiber composite at a current density of 50 mA/cm2[63]
Fig.12 Single cell test results of spread-tow, UD, and commercial graphite bipolar plates. (A) Representative charge/discharge graphs; (B) Energy efficiencies, coulombic efficiencies and voltage efficiencies[66]
1 | LIAO W, JIANG F, ZHANG Y, et al. Highly-conductive composite bipolar plate based on ternary carbon materials and its performance in redox flow batteries[J]. Renewable Energy, 2020, 152: 1310-1316. |
2 | GUPTA G, SATOLA B, KOMSIYSKA L, et al. Electrochemical aging and characterization of graphite-polymer based composite bipolar plates for vanadium redox flow batteries[J]. J Electrochem Soc, 2022, 169(8): 080503. |
3 | PAN J, WEN Y, CHENG J, et al. Evaluation of substrates for zinc negative electrode in acid PbO2-Zn single flow batteries[J]. Chin J Chem Eng, 2016, 24(4): 529-534. |
4 | LEE N J, LEE S, KIM K J, et al. Development of carbon composite bipolar plates for vanadium redox flow batteries[J]. Bull Korean Chem Soc, 2012, 33(11): 3589-3592. |
5 | 王文嫔, 王金海, 王树博, 等. 全钒氧化还原液流电池复合双极板制备与性能[J]. 化工学报, 2011, 62(S1): 203-207. |
WANG W P, WANG J H, WANG S B, et al. Properties of conductive bipolar plate for all-vanadium flow battery[J]. CIESC J, 2011, 62(S1): 203-207. | |
6 | PARK M, JUNG Y, RYU J, et al. Material selection and optimization for highly stable composite bipolar plates in vanadium redox flow batteries[J]. J Mater Chem A, 2014, 2: 15808-15815. |
7 | KIM K H, KIM B G, LEE D G. Development of carbon composite bipolar plate (BP) for vanadium redox flow battery (VRFB)[J]. Compos Struct, 2014, 109: 253-259. |
8 | PUKHA V E, GLUKHOV A A, BELMESOV A A, et al. Corrosion-resistant nanostructured carbon-based coatings for applications in fuel cells based on bipolar plates[J]. Vacuum, 2023, 218: 112643. |
9 | MINKE C, KUNZ U, TUREK T. Techno-economic assessment of novel vanadium redox flow batteries with large-area cells[J]. J Power Sources, 2017, 361: 105-114. |
10 | MINKE C, TUREK T. Materials, system designs and modelling approaches in techno-economic assessment of all-vanadium redox flow batteries-a review[J]. J Power Sources, 2018, 376: 66-81. |
11 | ZHENG M, SUN J, MEINRENKEN C J, et al. Pathways toward enhanced techno-economic performance of flow battery systems in energy system applications[J]. J Electrochem Energy Convers Storage, 2019, 16(2): 021001. |
12 | LOKTIONOV P, KARTASHOVA N, KONEV D, et al. Fluoropolymer impregnated graphite foil as a bipolar plates of vanadium flow battery[J]. Int J Energy Res, 2021, 46(8): 10123-10132. |
13 | FRANK R, WITTMANN L, KLEFFEL T, et al. Investigating the integration of nonwoven carbon fibers for mechanical enhancement in compression molded fiber-reinforced polymer bipolar plates[J]. Polymers, 2023, 15(19): 3891. |
14 | 杨虹, 刘庆华, 缪平, 等. 液流电池双极板材料研究进展[J]. 现代化工, 2020, 40(12): 77-86. |
YANG H, LIU Q H, MIU P, et al. Advances in bipolar plate materials for redox flow battery[J]. Mod Chem Ind, 2020, 40(12): 77-86. | |
15 | MINKE C, HICKMANN T, SANTOS A R D, et al. Cost and performance prospects for composite bipolar plates in fuel cells and redox flow batteries[J]. J Power Sources, 2016, 305: 182-190. |
16 | TIUSANEN J, VLASVELD D, VUORINEN J. Review on the effects of injection moulding parameters on the electrical resistivity of carbon nanotube filled polymer parts[J]. Compos Sci Technol, 2012, 72(14): 1741-1752. |
17 | CAGLAR B, FISCHER P, KAURANEN P, et al. Development of carbon nanotube and graphite filled polyphenylene sulfide based bipolar plates for all-vanadium redox flow batteries[J]. J Power Sources, 2014, 256: 88-95. |
18 | MA P, SIDDIQUI N A, MAROM G, et al. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review[J]. Composites Part A, 2010, 41(10): 1345-1367. |
19 | JEONG K I, OH J, SONG S A, et al. A review of composite bipolar plates in proton exchange membrane fuel cells: electrical properties and gas permeability[J]. Compos Struct, 2021, 262: 113617. |
20 | LEE D, LIM J W, NAM S, et al. Method for exposing carbon fibers on composite bipolar plates[J]. Compos Struct, 2015, 134: 1-9. |
21 | CHOI N H, OLMO D D, FISCHER P, et al. Development of flow fields for zinc slurry air flow batteries[J]. Batteries, 2020, 6(1): 15. |
22 | DUAN Z N, QU Z G, WANG Q, et al. Structural modification of vanadium redox flow battery with high electrochemical corrosion resistance[J]. Appl Energy, 2019, 250: 1632-1640. |
23 | DARLING R M, PERRY M L. The influence of electrode and channel configurations on flow battery performance[J]. J Electrochem Soc, 2014, 161: A1381. |
24 | LOURENSSEN K, WILLIAMS J, AHMADPOUR F, et al. Vanadium redox flow batteries: a comprehensive review[J]. J Energy Storage, 2019, 25: 100844. |
25 | GERHARDT M R, WONG A A, AZIZ M J. The effect of interdigitated channel and land dimensions on flow cell performance[J]. J Electrochem Soc, 2018, 165: A2625. |
26 | SATOLA B. Review-bipolar plates for the vanadium redox flow battery[J]. J Electrochem Soc, 2021, 168: 060503. |
27 | ZENG Y, LI F, LU X, et al. A hierarchical interdigitated flow field design for scale-up of high-performance redox flow batteries[J]. Appl Energy, 2019, 238: 435-441. |
28 | LEE J, KIM J, PARK H. Numerical simulation of the power-based efficiency in vanadium redox flow battery with different serpentine channel size[J]. Int J Hydrogen Energy, 2019, 44(56): 29483-29492. |
29 | AL-YASIRI M, PARK J. Study on channel geometry of all-vanadium redox flow batteries[J]. J Electrochem Soc, 2017, 164: A1970. |
30 | HOUSER J, CLEMENT J, PEZESHKI A, et al. Influence of architecture and material properties on vanadium redox flow battery performance[J]. J Power Sources, 2016, 302: 369-377. |
31 | MAURYA S, NGUYEN P T, KIM Y S, et al. Effect of flow field geometry on operating current density, capacity and performance of vanadium redox flow battery[J]. J Power Sources, 2018, 404: 20-27. |
32 | YEETSORN R, OUAJAI W P, ONYU K. Studies on surface modification of polypropylene composite bipolar plates using an electroless deposition technique[J]. RSC Adv, 2020,10: 24330-24342. |
33 | LIU Z, WANG B, YU L. Preparation and surface modification of PVDF-carbon felt composite bipolar plates for vanadium flow battery[J]. J Energy Chem, 2018, 27(5): 1369-1375. |
34 | CAGLAR B, FISCHER P, KAURANEN P, et al. Development of carbon nanotube and graphite filled polyphenylene sulfide based bipolar plates for all-vanadium redox flow batteries[J]. J Power Sources, 2014, 256: 88-95. |
35 | LIAO W, ZHANG Y, ZHOU X, et al. Low-carbon-content composite bipolar plates: a novel design and its performance in vanadium redox flow batteries[J]. ChemistrySelect, 2019, 4(8): 2421-2427. |
36 | PARK M, JUNG Y, RYU J, et al. Material selection and optimization for highly stable composite bipolar plates in vanadium redox flow batteries[J]. J Mater Chem A, 2014, 2: 15808-15815. |
37 | CHOE J, LIM J W. Carbon-composite bipolar plate-integrated current collector for vanadium redox flow battery[J]. J Power Sources, 2024, 589: 233751. |
38 | KRISHNAN N N, GUPTA G, SATOLA B, et al. Connection of bipolar plate with graphite felt electrode for vanadium flow battery using a powder thermal unification method[J]. J Electrochem Soc, 2022, 169: 100517. |
39 | DARICIK F, TOPCU A, AYDIN K, et al. Carbon nanotube (CNT) modified carbon fiber/epoxy composite plates for the PEM fuel cell bipolar plate application[J]. Int J Hydrogen Energy, 2023, 48(3): 1090-1106. |
40 | NAM S, LEE D, LEE D G, et al. Nano carbon/fluoroelastomer composite bipolar plate for a vanadium redox flow battery (VRFB)[J]. Compos Struct, 2017, 159: 220-227. |
41 | BHOSLE A C, RENGASWAMY R. Interfacial contact resistance in polymer electrolyte membrane fuel cells: recent developments and challenges[J]. Renewable Sustainable Energy Rev, 2019, 115: 109351. |
42 | WULFSBERG J, HERRMANN A, ZIEGMANN G, et al. Combination of carbon fibre sheet moulding compound and prepreg compression moulding in aerospace industry[J]. Procedia Eng, 2014, 81: 1601-1607. |
43 | YANG L, ZHOU Y, WANG S, et al. A novel bipolar plate design for vanadium redox flow battery application[J]. Int J Electrochem Sci, 2017, 12(8): 7031-7038. |
44 | LI W, JING S, WANG S, et al. Experimental investigation of expanded graphite/phenolic resin composite bipolar plate[J]. Int J Hydrogen Energy, 2016, 41(36): 16240-16246. |
45 | GAUTAM R K, KUMAR A. A review of bipolar plate materials and flow field designs in the all-vanadium redox flow battery[J]. J Energy Storage, 2022, 48: 104003. |
46 | DUAN Z, QU Z, REN Q, et al. Review of bipolar plate in redox flow batteries: materials, structures, and manufacturing[J]. Electrochem Energy Rev, 2021, 4: 718-756. |
47 | CHOE J, LIM J W. Conductive nanoparticle-embedded carbon composite bipolar plates for vanadium redox flow batteries[J]. Compos Struct, 2024, 329: 117770. |
48 | LEE D, CHOE J, NAM S, et al. Development of non-woven carbon felt composite bipolar plates using the soft layer method[J]. Compos Struct, 2017, 160: 976-982. |
49 | LEE D, LEE D G, LIM J W. Development of multifunctional carbon composite bipolar plate for vanadium redox flow batteries[J]. J Intell Mater Syst Struct, 2018, 29(17): 3386-3395. |
50 | KIM S, YOON Y, NAREJO G M, et al. Flexible graphite bipolar plates for vanadium redox flow batteries[J]. Int J Energy Res, 2021, 45(7): 11098-11108. |
51 | RUBAN E, STEPASHKIN A, GVOZDIK N, et al. Carbonized elastomer composite filled with hybrid carbon fillers for vanadium redox flow battery bipolar plates[J]. Mater Today Commun, 2021, 26: 101967. |
52 | RAMIREZ-HERRERA C A, TELLEZ-CRUZ M M, PEREZ-GONZALEZ J, et al. Enhanced mechanical properties and corrosion behavior of polypropylene/multi-walled carbon nanotubes/carbon nanofibers nanocomposites for application in bipolar plates of proton exchange membrane fuel cells[J]. Int J Hydrogen Energy, 2021, 46(51): 26110-26125. |
53 | LI W, JING S, WANG S, et al. Experimental investigation of expanded graphite/phenolic resin composite bipolar plate[J]. Int J Hydrogen Energy, 2016, 41(36): 16240-16246. |
54 | MENG Q, YU L, SHANG L, et al. Corrosive behavior and interfacial conductivity of stampable a-C film on titanium bipolar plate in proton exchange membrane fuel cells[J]. Diamond Relat Mater, 2023, 135: 109796. |
55 | CHOE J, LIM J W, KIM M, et al. Durability of graphite coated carbon composite bipolar plates for vanadium redox flow batteries[J]. Compos Struct, 2015, 134: 106-113. |
56 | HU B, CHEN L, GUO C, et al. Constructing three-dimensional conductive network in composite bipolar plates by sacrificial materials for improvement of proton exchange membrane fuel cell performance[J]. J Power Sources, 2022, 552: 232261. |
57 | LIU H, YANG L, XU Q, et al. Corrosion behavior of a bipolar plate of carbon-polythene composite in a vanadium redox flow battery[J]. RSC Adv, 2015, 5: 5928-5932. |
58 | STAOLA B, KOMSIYSKA L, WITTSTOCK G. Corrosion of graphite-polypropylene current collectors during overcharging in negative and positive vanadium redox flow battery half-cell electrolytes[J]. J Electrochem Soc, 2018, 165: A963. |
59 | SHARMA P, BILICAN A, SCHMIDT W, et al. Navigating harsh ageing: unraveling galvanostatic corrosion effects on different constituents of carbon-polymer composite bipolar plates for vanadium redox flow batteries[J]. Carbon, 2024, 221: 118907. |
60 | JIANG F, LIAO W, AYUKAWA T, et al. Enhanced performance and durability of composite bipolar plate with surface modification of cactus-like carbon nanofibers[J]. J Power Sources, 2021, 482: 228903. |
61 | LIM J W, LEE D G. Carbon fiber/polyethylene bipolar plate-carbon felt electrode assembly for vanadium redox flow batteries (VRFB)[J]. Compos Struct, 2015, 134: 483-492. |
62 | LV B, SHAO Z, HE L, et al. A novel graphite/phenolic resin bipolar plate modified by doping carbon fibers for the application of proton exchange membrane fuel cells[J]. Prog Nat Sci: Mater Int, 2020, 30(6): 876-881. |
63 | ZHANG J, ZHOU T, XIA L, et al. Polypropylene elastomer composite for the all-vanadium redox flow battery: current collector materials[J]. J Mater Chem A, 2015, 3: 2387-2398. |
64 | ARTEIRO A, CATALANOTTI G, XAVIER J, et al. Effect of tow thickness on the structural response of aerospace-grade spread-tow fabrics[J]. Compos Struct, 2017, 179: 208-223. |
65 | SASIKUMAR A, TRIAS D, COSTA J, et al. Impact and compression after impact response in thin laminates of spread-tow woven and non-crimp fabrics[J]. Compos Struct, 2019, 215: 432-445. |
66 | CHOE J, LEE D, ON S Y, et al. Development of a spread-tow fabric composite bipolar plate with fiber-spreading effect for vanadium redox flow battery[J]. Composites Part A, 2024, 176: 107878. |
[1] | Xiao-Jun LYU, Qing-Bo ZHAO, Hong-Fu ZHAO, San-Rong LIU, Ji-Fu BI, Bo-Yang TANG. Research Progress in the Preparation of Functional Block Polymers Based on Hydroxy-Terminated Polybutadiene Liquid Rubber [J]. Chinese Journal of Applied Chemistry, 2024, 41(8): 1073-1084. |
[2] | Xue-Yan YANG, Jun-Jie SHI, Yong-Jun ZHOU, Yu-Mei DAI, Hong-Zhou LI. Flame Retardancy of Epoxy Resin Enhanced by Intercalation of Magnesium Aluminum Hydrotalcite with Phosphorous Flame Retardants [J]. Chinese Journal of Applied Chemistry, 2024, 41(8): 1154-1167. |
[3] | Cheng-Xin SHANG, Jun-Sheng HAO, Song-Bai WANG. Exploration and Practice of Teaching Mode of Polymer Chemistry Experiment under the Background of New Engineering [J]. Chinese Journal of Applied Chemistry, 2024, 41(3): 452-458. |
[4] | Kai-Jun LEI, Run-Run QIANG, Huai-Guo LI, Fang-Hao ZHENG, Zi-Xue JIAO, Zong-Liang WANG, Yu WANG, Ming-Feng HE, Pei-Biao ZHANG. Preparation and Characterization of Shangkehuangshui/Polyvinyl Alcohol Electrospinning Nanofiber Membranes as Wound Dressing [J]. Chinese Journal of Applied Chemistry, 2023, 40(11): 1539-1549. |
[5] | Chun-Bo WANG, Peng-Bo LIU, Zeng-Wen CAO, Guang-Yuan ZHOU. Preparation and Characterization of Vinyltri(2-methoxyethoxy)silane Grafted Ethylene Vinyl Acetate Copolymer [J]. Chinese Journal of Applied Chemistry, 2023, 40(10): 1405-1411. |
[6] | Fu-Lin WANG, Zhong-Fu ZHAO, Yi-Ming LIANG, Jian-En HUANG, Chun-Qing ZHANG. Preparation, Structure and Properties of Crystalline Homo-Polystyrene/Hydrogenated Poly(styrene-b-butadiene-b-styrene) Anion Exchange Membrane [J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 833-844. |
[7] | Xin-Tao XIE, Sang-Ni JIANG, Xi-Fei YU. Selective Binding pH Responsive Liposomes with Phenylboronic Acid for Drug Delivery [J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 860-870. |
[8] | Yu-Jie MA, Ying-Xin ZHANG, Huan-Yan DAI, Zhi-Min XU, Bing HAN. Preparation and Properties of 3D Printed nHA/PEEK-AgNPs Composite Porous Scaffolds [J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 536-545. |
[9] | Xiao-Mei WANG, Jiang-Fei GUO, Li-Zhi WANG, Jian-Han HUANG. Porphyrin⁃Based Hyper⁃cross⁃Linked Polymer: Preparation and Adsorption of Carbon Dioxide and Hg(Ⅱ) Ion [J]. Chinese Journal of Applied Chemistry, 2022, 39(7): 1083-1089. |
[10] | Di XU, Li DAI, Wen-Zhi YAO, Guang-Rui YANG, Hai-Rong WANG, Peng-Fei SONG, Yan-Song ZHU. Research Progress of Olefin Polymerization Catalysts [J]. Chinese Journal of Applied Chemistry, 2022, 39(3): 355-373. |
[11] | Jiu-Geng CHENG, Zhao-Hui SU. Quantitative Analysis of Phase Composition of Poly (1-butene) /Polypropylene Blends by Atomic Force Microscopy-Infrared [J]. Chinese Journal of Applied Chemistry, 2022, 39(02): 266-271. |
[12] | Zhao-Yong ZHANG, Qian LI, Da-Lin WANG, Jiang-Lin FANG, Dong-Zhong CHEN. Controlled Synthesis and Photophysical Properties of Liquid Crystalline Diblock Copolymers with Side⁃Chain Discotic Triphylene and Calamitic Azobenzene Mesogens [J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1340-1352. |
[13] | Jun-Wei GU, Bei CHENG, Xu-Tong YANG. Liquid Crystal Functionalized Boron Nitride Fillers/Liquid Crystal Epoxy Thermally Conductive Composites [J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1382-1388. |
[14] | Fei ZHAI, Wei FENG. 4D Printed Liquid Crystal Elastomer Soft Robot and Its Thermal Derived Motion Behavior [J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1389-1396. |
[15] | Zhao-Yong ZHANG, Qian LI, Da-Lin WANG, Jiang-Lin FANG, Dong-Zhong CHEN. Controlled Synthesis and Photophysical Properties of Liquid Crystalline Diblock Copolymers with Side⁃Chain Discotic Triphylene and Calamitic Azobenzene Mesogens [J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 0-0. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||