[1] | Darbha G K,Ray A,Ray P C. Gold Nanoparticle-Based Miniaturized Nanomaterial Surface Energy Transfer Probe for Rapid and Ultrasensitive Detection of Mercury in Soil, Water, and Fish[J]. ACS Nano,2007,1(3):208-214. | [2] | Prigogine I. Molecular Fluorescence and Energy Transfer near Interfaces[M]. Hoboken NJ:John Wiley & Sons Inc,2007. | [3] | Yun C S,Javier A,Jennings T,et al.Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier[J]. J Am Chem Soc,2005,127(9):3115-3119. | [4] | Jennings T L,Singh M P,Strouse G F. Fluorescent Lifetime Quenching near D=1.5 nM Gold Nanoparticles:Probing NSET Validity[J]. J Am Chem Soc,2006,128(16):5462-5467. | [5] | Yamazoe S,Koyasu K,Tsukuda T. Nonscalable Oxidation Catalysis of Gold Clusters[J]. Acc Chem Res,2014,47(3):816-824. | [6] | Gao F,Ye Q,Cui P,et al.Selective “Turn-on” Fluorescent Sensing for Biothiols Based on Fluorescence Resonance Energy Transfer Between Acridine Orange and Gold Nanoparticles[J]. Anal Methods,2011,3(5):1180-1185. | [7] | Huang C C,Chang H T. Selective Gold-Nanoparticle-Based “Turn-on” Fluorescent Sensors for Detection of Mercury(Ⅱ) in Aqueous Solution[J]. Anal Chem,2006,78(24):8332-8338. | [8] | Shang L,Qin C,Wang T,et al.Fluorescent Conjugated Polymer-Stabilized Gold Nanoparticles for Sensitive and Selective Detection of Cysteine[J]. J Phys Chem C,2007,111(36):13414-13417. | [9] | He X,Liu H,Li Y,et al.Gold Nanoparticle-Based Fluorometric and Colorimetric Sensing of Copper(Ⅱ) Ions[J]. Adv Mater,2005,17(23):2811-2815. | [10] | Bu D,Zhuang H,Yang G,et al.An Immunosensor Designed for Polybrominated Biphenyl Detection Based on Fluorescence Resonance Energy Transfer(FRET) Between Carbon Dots and Gold Nanoparticles[J]. Sens Actuators B,2014,195:540-548. | [11] | LIU Chun,HUANG Chengzhi. Detection of Lead Ions in Water Based on Surface Energy Transfer Between Gold Nanoparticles and Fluorescenct Dyes[J]. Chinese J Anal Chem,2014,(8):1196-1199(in Chinese). 刘春,黄承志. 金纳米粒子表面能量转移法测定水中的铅离子[J]. 分析化学,2014,(8):1196-1199. | [12] | Isokawa M,Kanamori T,Funatsu T,et al.Analytical Methods Involving Separation Techniques for Determination of Low-Molecular-Weight Biothiols in Human Plasma and Blood[J]. J Chromatogr B Anal Technol Biomed Life Sci,2014,964:103-115. | [13] | Dominy J E,Stipanuk M H. New Roles for Cysteine and Transsulfuration Enzymes:Production of H2S, a Neuromodulator and Smooth Muscle Relaxant[J]. Nutr Rev,2004,62(9):348-353. | [14] | Wang W,Li L,Liu S,et al.Determination of Physiological Thiols by Electrochemical Detection with Piazselenole and Its Application in Rat Breast Cancer Cells 4T-1[J]. J Am Chem Soc,2008,130(33):10846-10847. | [15] | Manibalan K,Chen S M,Mani V,et al.A Sensitive Ratiometric Long-Wavelength Fluorescent Probe for Selective Determination of Cysteine/Homocysteine[J]. J Fluoresc,2016,26(4):1489-1495. | [16] | Uzu T,Sasaki S. A New Copper(Ⅱ) Complex as an Efficient Catalyst of Luminol Chemiluminescence[J]. Org Lett,2007,9(21):4383-4386. | [17] | White R J,Luque R,Budarin V L,et al.Supported Metal Nanoparticles on Porous Materials. Methods and Applications[J]. Chem Soc Rev,2009,38(2):481-494. | [18] | Newton M A. Dynamic Adsorbate/Reaction Induced Structural Change of Supported Metal Nanoparticles:Heterogeneous Catalysis and Beyond[J]. Chem Soc Rev,2008,37(12):2644-2657. | [19] | Turner M,Golovko V B,Vaughan O P,et al.Selective Oxidation with Dioxygen by Gold Nanoparticle Catalysts Derived from 55-Atom Clusters[J]. Nature,2008,454(7207):981-983. | [20] | Li W,Wang A,Yang X,et al.Au/SiO2 as a Highly Active Catalyst for the Selective Oxidation of Silanes to Silanols[J]. Chem Commun,2012,48(73):9183-9185. | [21] | Caltagirone C,Bettoschi A,Garau A,et al.Silica-Based Nanoparticles:A Versatile Tool for the Development of Efficient Imaging Agents[J]. Chem Soc Rev,2015,44(14):4645-4671. | [22] | Coasne B,Galarneau A,Pellenq R J,et al.Adsorption, Intrusion and Freezing in Porous Silica:The View from the Nanoscale[J]. Chem Soc Rev,2013,42(9):4141-4171. | [23] | Rimola A,Costa D,Sodupe M,et al.Silica Surface Features and Their Role in the Adsorption of Biomolecules:Computational Modeling and Experiments[J]. Chem Rev,2013,113(6):4216-4313. | [24] | Wang C,Lin X,Ge Y,et al.Silica-Supported Ultra Small Gold Nanoparticles as Nanoreactors for the Etherification of Silanes[J]. RSC Adv,2016,6(104):102102-102108. | [25] | Griffin J,Singh A K,Senapati D,et al.Size- and Distance-Dependent Nanoparticle Surface-Energy Transfer(NSET) Method for Selective Sensing of Hepatitis C Virus RNA[J]. Chem-Eur J,2009,15(2):342-351. | [26] | LIU Chun,WU Tong,HUANG Chengzhi. Gold Nanoparticles Surface Energy Transfer and Its Application to Highly Selective and Sensitive Detection of Cysteine[J]. Sci Sin Chim,2010,40:531-537(in Chinese). 刘春,吴同,黄承志. 金纳米微粒表面能量转移及半胱氨酸的高灵敏度高选择性分析法[J]. 中国科学:化学,2010,40: 531-537. | [27] | Kamiya I,Tsunoyama H,Tsukuda T,et al.Lewis Acid Character of Zero-Valent Gold Nanoclusters Under Aerobic Conditions:Intramolecular Hydroalkoxylation of Alkenes[J]. Chem Lett,2007,36(5):646-647. | [28] | Wu Z L,Jiang D E, Mann A K P, et al. Thiolate Ligands as a Double-Edged Sword for Co Oxidation on CeO2 Supported Au25(SCH2CH2ph)18 Nanoclusters[J]. J Am Chem Soc,2014,136(16):6111-6122. | [29] | Jose D,Matthiesen J E,Parsons C,et al.Size Focusing of Nanoparticles by Thermodynamic Control Through Ligand Interactions. Molecular Clusters Compared with Nanoparticles of Metals[J]. J Phys Chem Lett,2012,3(7):885-890. |
|