
应用化学 ›› 2024, Vol. 41 ›› Issue (5): 728-738.DOI: 10.19894/j.issn.1000-0518.240028
柴小静1, 赵瑞瑞1, 张羱2, 董川2(), 双少敏1(
)
收稿日期:
2024-01-28
接受日期:
2024-04-14
出版日期:
2024-05-01
发布日期:
2024-06-03
通讯作者:
董川,双少敏
基金资助:
Xiao-Jing CHAI1, Rui-Rui ZHAO1, Yuan ZHANG2, Chuan DONG2(), Shao-Min SHUANG1(
)
Received:
2024-01-28
Accepted:
2024-04-14
Published:
2024-05-01
Online:
2024-06-03
Contact:
Chuan DONG,Shao-Min SHUANG
About author:
smshuang@sxu.edu.cnSupported by:
摘要:
通过溶剂热法制备了一种铜/钪金属有机框架(Cu@Sc-MOF)纳米酶,在H2O2存在下,Cu@Sc-MOF可催化氧化3,3?,5,5'-四甲基联苯胺(TMB)得到蓝色氧化产物oxTMB,并在652 nm处产生特征吸收峰。 同样,Cu@Sc-MOF也可氧化邻苯二胺(OPD)生成2-氨基吩嗪(DAP),并在570 nm产生特征荧光发射峰(激发波长为390 nm)。 由于5?-三磷酸腺苷(ATP)与Cu2+络合,抑制了Cu@Sc-MOF的催化活性,使得652 nm处的吸光度和570 nm处的荧光强度减弱,基于Cu@Sc-MOF的类过氧化物酶活性,构建了一种用于检测ATP的比色/荧光双模式光谱法。 比色和荧光分析法的线性范围分别为2.50~40.00 μmol/L和1.00~22.50 μmol/L,检出限(LOD)分别为0.60和0.27 μmol/L。 将上述比色/荧光双模式分析法用于肝癌细胞HepG2细胞裂解液中ATP的检测,加标回收率分别为92.0%~101%和93.2%~97.9%,具有良好的应用前景。
中图分类号:
柴小静, 赵瑞瑞, 张羱, 董川, 双少敏. 金属有机框架Cu@Sc-MOF纳米酶对5΄-三磷酸腺苷的比色/荧光检测[J]. 应用化学, 2024, 41(5): 728-738.
Xiao-Jing CHAI, Rui-Rui ZHAO, Yuan ZHANG, Chuan DONG, Shao-Min SHUANG. Colorimetric/Fluorometric Detection of Adenosine-5′-Triphosphate Based on Metal-Organic Framework Cu@Sc-MOF Nanozyme[J]. Chinese Journal of Applied Chemistry, 2024, 41(5): 728-738.
图3 Cu@Sc-MOF和Sc-MOF的 (A) XRD图谱、 (B) FT-IR光谱、 (C) N2吸附-脱附等温线、 (D) XPS全谱图及Cu@Sc-MOF的 (E) C1s、 (F) O1s、 (G) Sc2p、 (H) Cu2p和 (I) N1s高分辨谱图
Fig.3 (A) XRD pattern, (B) FT-IR spectra, (C) nitrogen adsorption and desorption isotherm curves, (D) XPS spectra of Cu@Sc-MOF and Sc-MOF, and (E) C1s, (F) O1s, (G) Sc2p (H) Cu2p and (I) N1s high-resolution spectrum of Cu@Sc-MOF
图4 Cu@Sc-MOF催化H2O2氧化TMB/OPD反应的影响因素考察: (A) Cu@Sc-MOF浓度、 (B) pH值、 (C) 温度、(D) 反应时间、 (E) H2O2浓度、 (F) Cu@Sc-MOF浓度、 (G) OPD浓度和(H)pH值
Fig.4 Dependence of relative catalytic activity of Cu@Sc-MOF toward oxidation of TMB/OPD by H2O2 on (A) concentration of Cu@Sc-MOF, (B) pH, (C) temperature, (D) reaction time, (E) concentration of H2O2, (F) concentration of Cu@Sc-MOF, (G) concentration of OPD and (H) pH
图5 (A) TMB在不同反应体系的吸收光谱图; (B) OPD在不同反应体系的荧光发射光谱图
Fig.5 (A) UV-Vis absorption spectra of TMB in different reaction systems; (B) The Fluorescence emission spectra of OPD in different reaction systems
Material | Km/(mmol·L-1) | 108vmax/(mol·L-1·s-1) | Ref. | ||
---|---|---|---|---|---|
TMB | H2O2 | TMB | H2O2 | ||
HRP | 0.434 | 3.70 | 10.0 | 8.71 | [ |
Cu-BDCPPI | 0.890 | 0.290 | 3.36 | 1.29 | [ |
Cu-MOF | 0.047 7 | 2.65 | 0.312 | 0.126 | [ |
Fe-BTC | 0.261 | 0.033 4 | 7.95 | 2.65 | [ |
Fe3Ni-MOF-NH2 | 0.241 | 0.156 | 1.13 | 1.27 | [ |
Mo-CDs | 0.245 | 3.20 | 0.176 | 4.76 | [ |
Cu@Sc-MOF | 0.040 | 0.086 | 1.74 | 4.69 | This work |
表1 Cu@Sc-MOF、HRP和其他类过氧化物酶模拟物的稳态动力学分析
Table 1 Steady-State Kinetics of the Cu@Sc-MOF, HRP and other POD-like mimics
Material | Km/(mmol·L-1) | 108vmax/(mol·L-1·s-1) | Ref. | ||
---|---|---|---|---|---|
TMB | H2O2 | TMB | H2O2 | ||
HRP | 0.434 | 3.70 | 10.0 | 8.71 | [ |
Cu-BDCPPI | 0.890 | 0.290 | 3.36 | 1.29 | [ |
Cu-MOF | 0.047 7 | 2.65 | 0.312 | 0.126 | [ |
Fe-BTC | 0.261 | 0.033 4 | 7.95 | 2.65 | [ |
Fe3Ni-MOF-NH2 | 0.241 | 0.156 | 1.13 | 1.27 | [ |
Mo-CDs | 0.245 | 3.20 | 0.176 | 4.76 | [ |
Cu@Sc-MOF | 0.040 | 0.086 | 1.74 | 4.69 | This work |
图7 (A)不同体系DPBF的相对吸收; (B)活性氧清除剂(PBQ、his与Thiourea)对Cu@Sc-MOF的相对活性的影响;(C)Cu@Sc-MOF催化体系的ESR谱图; (D)TA在不同体系中的荧光光谱图
Fig.7 (A) The relative absorption of DPBF with different treatments; (B) The relative activity of Cu@Sc-MOF catalytic system with ROS scavengers (PBQ, His and Thiourea); (C) ESR spectra of Cu@Sc-MOF catalytic systems; (D) Fluorescence spectra of TA in different systems
图8 (A) oxTMB在ATP存在下的紫外-可光吸收光谱图; (B) 652 nm处吸光度相对比值随ATP浓度的变化曲线; (C) 比色检测ATP体系的选择性; (D) DAP在不同ATP浓度存在下的荧光光谱图; (E) 570 nm处的F/F0与ATP浓度的线性关系; (F) 荧光检测ATP体系的选择性; (G) 不同干扰物质对oxTMB相对吸光度的影响; (H) 不同干扰物质对DAP相对荧光强度的影响Fig.?8 (A) UV-Vis absorption spectra of the oxidized TMB in the mixture of ATP; (B) Calibration curve of Cu@Sc-MOF between the ΔA652 nm and ATP concentration; (C) Selectivity in the detection of ATP by Colorimetric mode; (D) Fluorescence spectra of DAP in the mixture of ATP; (E) Linear relationship between F/F0and ATP concentration; (F) Selectivity in the detection of ATP by Fluorescence mode; (G) The influence of different coexisting substances on the relative absorbance of oxTMB; (H) The influence of different coexisting substances on the relative fluorescence intensity of DAP
Materials | Method | Linear range/(μmol·L-1) | Limit of detection/(nmol·L-1) | Ref. |
---|---|---|---|---|
Tb/Eu-MOF | Fluorescence | 0~8 | 121.4 | [ |
UiO-66@COF | Fluorescence | 0~10 | 38.0 | [ |
Cy5@UiO-67 | Fluorescence | 0.008~1 | 0.503 | [ |
Thioflavin T | Fluorescence | 0~5 | 24.8 | [ |
CDs/OPD-Cu2+ | Fluorescence | 1.0~100 | 430 | [ |
N-GQDs | Fluorescence | 0~10 | 1.16 | [ |
Cu@Sc-MOF | Colorimetry | 2.5~40 | 600 | This work |
Cu@Sc-MOF | Fluorescence | 1.0~22.5 | 270 | This work |
表2 Cu@Sc-MOF与其他ATP传感器的灵敏度比较
Table 2 Comparison of sensitivity between Cu@Sc-MOF and other ATP sensors
Materials | Method | Linear range/(μmol·L-1) | Limit of detection/(nmol·L-1) | Ref. |
---|---|---|---|---|
Tb/Eu-MOF | Fluorescence | 0~8 | 121.4 | [ |
UiO-66@COF | Fluorescence | 0~10 | 38.0 | [ |
Cy5@UiO-67 | Fluorescence | 0.008~1 | 0.503 | [ |
Thioflavin T | Fluorescence | 0~5 | 24.8 | [ |
CDs/OPD-Cu2+ | Fluorescence | 1.0~100 | 430 | [ |
N-GQDs | Fluorescence | 0~10 | 1.16 | [ |
Cu@Sc-MOF | Colorimetry | 2.5~40 | 600 | This work |
Cu@Sc-MOF | Fluorescence | 1.0~22.5 | 270 | This work |
Testing mode | Sample/(μmol·L-1) | Added/(μmol·L-1) | Found/(μmol·L-1) | Recovery/% | RSD/%(n=6) |
---|---|---|---|---|---|
Colorimetric mode | 2.83 | 10.00 | 11.81 | 92.0 | 2.9 |
15.00 | 17.53 | 98.3 | 2.7 | ||
35.00 | 38.18 | 101 | 2.3 | ||
Fluorescence mode | 2.91 | 5.00 | 7.38 | 93.2 | 3.4 |
15.00 | 17.54 | 97.9 | 2.8 | ||
20.00 | 21.87 | 95.4 | 1.3 |
表3 HepG2细胞裂解液中ATP检测结果
Table 3 Detection results of ATP in HepG2 cell lysate
Testing mode | Sample/(μmol·L-1) | Added/(μmol·L-1) | Found/(μmol·L-1) | Recovery/% | RSD/%(n=6) |
---|---|---|---|---|---|
Colorimetric mode | 2.83 | 10.00 | 11.81 | 92.0 | 2.9 |
15.00 | 17.53 | 98.3 | 2.7 | ||
35.00 | 38.18 | 101 | 2.3 | ||
Fluorescence mode | 2.91 | 5.00 | 7.38 | 93.2 | 3.4 |
15.00 | 17.54 | 97.9 | 2.8 | ||
20.00 | 21.87 | 95.4 | 1.3 |
1 | WANG Y, TANG L, LI Z, et al. In situ simultaneous monitoring of ATP and GTP using a graphene oxide nanosheet-based sensing platform in living cells[J]. Nat Protoc,2014, 9(8): 1944-1955. |
2 | ZHANG J, DUAN H, HONG Y, et al. Water-soluble conjugated polyelectrolytes for adenosine triphosphate (ATP) detection[J]. ACS Appl Polym,2023, 5(3): 2213-2222. |
3 | SHEN Y Z, QIAN T, DAN S Y, et al. ATP-activatable photosensitizer enables dual fluorescence imaging and targeted photodynamic therapy of tumor[J]. Anal Chem,2017, 89(24): 13610-13617. |
4 | MO R, JIANG T, DISANTO R, et al. ATP-triggered anticancer drug delivery[J]. Nat Commun, 2014, 5(1): 3364. |
5 | BHATT D P, CHEN X, GEIGER J D, et al. A sensitive HPLC-based method to quantify adenine nucleotides in primary astrocyte cell cultures[J]. J Chromatogr B,2012, 889: 110-115. |
6 | KASHEFI-KHEYRABADI L, MEHRGARDI M A. Aptamer-conjugated silver nanoparticles for electrochemical detection of adenosine triphosphate[J]. Biosens Bioelectron,2012, 37(1): 94-98. |
7 | WU Y, XIAO F, WU Z, et al. Novel aptasensor platform based on ratiometric surface-enhanced Raman spectroscopy[J]. Anal Chem,2017, 89(5): 2852-2858. |
8 | CALABRETTA M M, ÁLVAREZ-DIDUK R, MICHELINI E, et al. Nano-lantern on paper for smartphone-based ATP detection[J]. Biosens Bioelectron,2020, 150: 111902. |
9 | HUANG X, ZHANG S, TANG Y, et al. Advances in metal-organic framework-based nanozymes and their applications[J]. Coord Chem Rev,2021, 449: 214216. |
10 | HOU H, WANG L, GAO Y, et al. Recent advances in metal-organic framework-based nanozymes and their enabled optical biosensors for food safety analysis[J]. Trends Anal Chem,2024, 173: 117602. |
11 | AN M, HE M, LIN C, et al. Recent progress of nanozymes with different spatial dimensions for bioanalysis[J]. Mater Today Nano,2023, 22: 100330. |
12 | PANDA J, TRIPATHY S P, DASH S, et al. Inner transition metal-modulated metal organic frameworks (IT-MOFs) and their derived nanomaterials: a strategic approach towards stupendous photocatalysis[J]. Nanoscale,2023, 15(17): 7640-7675. |
13 | LI H, WU H, CHEN J, et al. Highly sensitive colorimetric detection of glutathione in human serum based on iron-copper metal-organic frameworks[J]. Langmuir,2022, 38(50): 15559-15569. |
14 | SU Y, WU H, CHEN J, et al. Novel scandium-MOF nanocrystals as peroxidase-mimicking nanozymes for highly sensitive colorimetric detection of ascorbic acid in human serum[J]. CrystEngComm,2023, 25(23): 3472-3483. |
15 | CHEN W, VÁZQUEZ-GONZÁLEZ M, KOZELL A, et al. Cu2+-modified metal-organic framework nanoparticles: a peroxidase-mimicking nanoenzyme[J]. Small,2018, 14(5): 1703149. |
16 | QU F, LI J, HAN W, et al. Simultaneous detection of adenosine triphosphate and glucose based on the Cu-Fenton reaction[J]. Sensors,2018, 18(7): 2151. |
17 | LEI Y, GAO Y, XIAO Y, et al. Cu2+-functionalized Zr-MOF triggers o-phenylendiamine oxidation for ultrasensitive ratiometric fluorescence detection of nerve agent simulant[J]. Sens Actuators B: Chem,2023, 396: 134553. |
18 | WU Z, CHEN R, PAN S, et al. A ratiometric fluorescence strategy based on dual-signal response of carbon dots and o-phenylenediamine for ATP detection[J]. Microchem J,2021, 164: 105976. |
19 | JIANG B, DUAN D, GAO L, et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes[J]. Nat Protoc,2018, 13(7): 1506-1520. |
20 | LI S, YU L, XIONG L, et al. Ratiometric fluorescence and chromaticity dual-readout assay for β-glucuronidase activity based on luminescent lanthanide metal-organic framework[J]. Sens Actuators B: Chem,2022, 355: 131282. |
21 | KIM M S, LEE J, KIM H S, et al. Heme cofactor-resembling Fe-N single site embedded graphene as nanozymes to selectively detect H2O2 with high sensitivity[J]. Adv Funct Mater,2020, 30(1): 1905410. |
22 | WANG S, WANG Y F, JIAO W N, et al. Imide-functionalized Cu-MOF: biomimetic peroxidase activity and detection of hydrogen peroxide and ascorbic acid[J]. Microporous Mesoporous Mater, 2024, 364: 112885. |
23 | KIRANDEEP, KAUR J, SHARMA I, et al. Fabrication of novel copper MOF nanoparticles for nanozymatic detection of mercury ions[J]. J Mater Res Technol,2023, 22: 278-291. |
24 | YUAN A, LU Y, ZHANG X, et al. Two-dimensional iron MOF nanosheet as a highly efficient nanozyme for glucose biosensing[J]. J Mater Chem B,2020, 8(40): 9295-9303. |
25 | MU Z, GUO J, LI M, et al. A sensitive fluorescence detection strategy for H2O2 and glucose by using aminated Fe-Ni bimetallic MOF as fluorescent nanozyme[J]. Microchim Acta, 2023, 190(3): 81. |
26 | LU W, GUO Y, YUE Y, et al. Smartphone-assisted colorimetric sensing platform based on molybdenum-doped carbon dots nanozyme for visual monitoring of ampicillin[J]. Chem Eng J,2023, 468: 143615. |
27 | WANG Y, XU Y, DONG S, et al. Ultrasonic activation of inert poly(tetrafluoroethylene) enables piezocatalytic generation of reactive oxygen species[J]. Nat Commun, 2021, 12(1): 3508. |
28 | WANG X, SONG X, WU J, et al. Mitochondria-targeting two-photon fluorescent probe for sequential recognition of Cu2+ and ATP in neurons and zebrafish[J]. Spectrochim Acta Part A: Mol Biomol Spectrosc,2023, 303: 123260. |
29 | ZHAO J, ZHANG J, YANG W, et al. Rational design of core-shell Ln-MOF hierarchitecture for ratiometric fluorescent sensing and bioimaging for phosphate or ATP[J]. Sens Actuators B: Chem,2023, 389: 133907. |
30 | WANG X, YIN H, YIN X. MOF@COFs with strong multiemission for differentiation and ratiometric fluorescence detection[J]. ACS Appl Mater Interfaces,2020, 12(18): 20973-20981. |
31 | WANG Y, ZHANG D, ZENG Y, et al. Target-modulated competitive binding and exonuclease I-powered strategy for the simultaneous and rapid detection of biological targets[J]. Biosens Bioelectron,2022, 198: 113817. |
32 | FAN Y, DENG X, WANG M, et al. A dual-function oligonucleotide-based ratiometric fluorescence sensor for ATP detection[J]. Talanta,2020, 219: 121349. |
33 | WU Z, CHEN R, PAN S, et al. A ratiometric fluorescence strategy based on dual-signal response of carbon dots and o-phenylenediamine for ATP detection[J]. Microchem J,2021, 164: 105976. |
34 | ZHANG H, WANG J, WEI S, et al. Nitrogen-doped graphene quantum dot-based portable fluorescent sensors for the sensitive detection of Fe3+ and ATP with logic gate operation[J]. J Mater Chem B,2023, 11(26): 6082-6094. |
[1] | 徐一, 林梦瑶, 宫晓群. 多色比色法在生物传感平台的研究进展[J]. 应用化学, 2024, 41(1): 3-20. |
[2] | 卢剑天, 邹金辉, 赵博霖, 张玉微. 无机纳米酶在分析传感领域的应用研究进展[J]. 应用化学, 2024, 41(1): 60-86. |
[3] | 赵越, 孟祥芹, 阎锡蕴, 范克龙. 纳米酶:一种新型的生物安全材料[J]. 应用化学, 2021, 38(5): 524-545. |
[4] | 李俊容,沈爱国,胡继明. 纳米酶及其分析检测应用研究进展[J]. 应用化学, 2016, 33(11): 1245-1252. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 168
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 221
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||