1 |
YERSIN H. Highly efficient OLEDs with phosphorescent materials[M]. Weinheim: Wiley-VCH, 2008.
|
2 |
YERSIN H, RAUSCH A F, CZERWIENIEC R, et al. The triplet state of organo-transition metal compounds. Triplet harvesting and singlet harvesting for efficient OLEDs[J]. Coord Chem Rev, 2011, 255(21/22): 2622-2652.
|
3 |
WANG X, WANG S. Phosphorescent Pt(Ⅱ) emitters for OLEDs: from triarylboron-functionalized bidentate complexes to compounds with macrocyclic chelating ligands[J]. Chem Rec, 2019, 19(8): 1693-1709.
|
4 |
FLEETHAM T, LI G, LI J. Phosphorescent Pt(Ⅱ) and Pd(Ⅱ) complexes for efficient, high-color-quality, and stable OLEDs[J]. Adv Mater, 2017, 29(5): 1601861.
|
5 |
YANG H, LI H, YUE L, et al. Aggregation-induced phosphorescence emission (AIPE) behaviors in PtⅡ(C^N) (N-donor ligand)Cl-type complexes through restrained D2d deformation of the coordinating skeleton and their optoelectronic properties[J]. J Mater Chem C, 2021, 9(7): 2334-2349.
|
6 |
SUN Y, CHEN C, LIU B, et al. Efficient dinuclear Pt(Ⅱ) complexes based on the triphenylphosphine oxide scaffold for high performance solution-processed OLEDs[J]. J Mater Chem C, 2021, 9(16): 5373-5378.
|
7 |
LU G, WU Z G, WU R, et al. Semitransparent circularly polarized phosphorescent organic light-emitting diodes with external quantum efficiency over 30% and dissymmetry factor close to 10-2[J]. Adv Funct Mater, 2021, 31(36): 2102898.
|
8 |
YANG R, ZHOU Y, BIAN H, et al. Enhancing quantum efficiency in Pt-based emitters using a pendant closo-monocarborane cluster to enforce charge neutrality[J]. Chem Eng J, 2022, 447: 137432.
|
9 |
DONG R, LI J, LIU D, et al. Self-host thermally activated delayed fluorescence material with aggregation-induced emission character: multi-functional applications in oleds[J]. Adv Optical Mater, 2021, 9(24): 2100970.
|
10 |
ZHANG Y, LI Q, CAI M, et al. An 850 nm pure near-infrared emitting iridium complex for solution-processed organic light-emitting diodes[J]. J Mater Chem C, 2020, 8(25): 8484-8492.
|
11 |
WEI Y C, WANG S F, HU Y, et al. Overcoming the energy gap law in near-infrared OLEDs by exciton-vibration decoupling[J]. Nat Photonics, 2020, 14(9): 570-577.
|
12 |
TANG M C, LEE C H, NG M, et al. Highly emissive fused heterocyclic alkynylgold(Ⅲ) complexes for multiple color emission spanning from green to red for solution-processable organic light-emitting devices[J]. Angew Chem Int Ed, 2018, 57(19): 5463-5466.
|
13 |
LI K, TONG G S M, YUAN J, et al. Excitation-wavelength-dependent and auxiliary-ligand-tuned intersystem-crossing efficiency in cyclometalated platinum(Ⅱ) complexes: spectroscopic and theoretical studies[J]. Inorg Chem, 2020, 59(20): 14654-14665.
|
14 |
FENG J, YANG L, ROMANOV A S, et al. Environmental control of triplet emission in donor-bridge-acceptor organometallics[J]. Adv Funct Mater, 2020, 30(9): 1908715.
|
15 |
CHOW P K, CHENG G, TONG G S, et al. Luminescent pincer platinum(Ⅱ) complexes with emission quantum yields up to almost unity: photophysics, photoreductive C—C bond formation, and materials applications[J]. Angew Chem Int Ed, 2015, 54(7): 2084-2089.
|
16 |
CULHAM S, LANOE P H, WHITTLE V L, et al. Highly luminescent dinuclear platinum(Ⅱ) complexes incorporating bis-cyclometallating pyrazine-based ligands: a versatile approach to efficient red phosphors[J]. Inorg Chem, 2013, 52(19): 10992-11003.
|
17 |
SHAFIKOV M Z, DANIELS R, PANDER P, et al. Dinuclear design of a Pt(Ⅱ) complex affording highly efficient red emission: photophysical properties and application in solution-processible oleds[J]. ACS Appl Mater Interfaces, 2019, 11(8): 8182-8193.
|
18 |
YANG X, JIAO B, DANG J S, et al. Achieving high-performance solution-processed orange oleds with the phosphorescent cyclometalated trinuclear Pt(Ⅱ) complex[J]. ACS Appl Mater Interfaces, 2018, 10(12): 10227-10235.
|
19 |
PUTTOCK E V, WALDEN M T, WILLIAMS J A G. The luminescence properties of multinuclear platinum complexes[J]. Coord Chem Rev, 2018, 367: 127-162.
|
20 |
SOELLNER J, PINTER P, STIPURIN S, et al. Platinum(Ⅱ) complexes with bis(pyrazolyl)borate ligands: increased molecular rigidity for bidentate ligand systems[J]. Angew Chem Int Ed Engl, 2021, 60(7): 3556-3560.
|
21 |
SU N, ZHENG Y X. Four-membered red iridium(Ⅲ) complexes with Ir-S-P-S structures: rapid room-temperature synthesis and application in OLEDs[J]. Dalton Trans, 2019, 48(22): 7583-7588.
|
22 |
LU G Z, SU N, YANG H Q, et al. Rapid room temperature synthesis of red iridium(Ⅲ) complexes containing a four-membered Ir-S-C-S chelating ring for highly efficient OLEDs with EQE over 30[J]. Chem Sci, 2019, 10(12): 3535-3542.
|
23 |
SUO X, NIE C, LIU W, et al. Red phosphorescent binuclear Pt(Ⅱ) complexes incorporating bis(diphenylphorothioyl)amide ligands: synthesis, photophysical properties and application in solution processable OLEDs[J]. J Mater Chem C, 2021, 9(30): 9505-9514.
|
24 |
ZHANG K, LIU Y, HAO Z, et al. A feasible approach to obtain near-infrared (NIR) emission from binuclear platinum(Ⅱ) complexes containing centrosymmetric isoquinoline ligand in PLEDs[J]. Org Electron, 2020, 87: 105902.
|