1 |
NICHOLLS L H, RODRIGUEZ-FORTUNO F J, NASIR M E, et al. Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials[J]. Nat Photonics, 2017, 11(10): 628-633.
|
2 |
TAGAYA A, OHKITA H, MUKOH M, et al. Compensation of the birefringence of a polymer by a birefringent crystal[J]. Science, 2003, 301(5634): 812-814.
|
3 |
LI M, PAN H, TONG Y, et al. All-optical ultrafast polarization switching of terahertz radiation by impulsive molecular alignment[J]. Opt Lett, 2011, 36(18): 3633-3635.
|
4 |
LUO H T, TKACZYK T, DERENIAK E L, et al. High birefringence of the yttrium vanadate crystal in the middle wavelength infrared[J]. Opt Lett, 2006, 31(5): 616-618.
|
5 |
ZELMON D E, SMALL D L, JUNDT D. Infrared corrected sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide-doped lithium niobate[J]. J Opt Soc Am B, 1997, 14(12): 3319-3322.
|
6 |
GHOSH G. Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals[J]. Opt Commun, 1999, 163(1/2/3): 95-102.
|
7 |
DEVORE J R. Refractive indices of rutile and sphalerite[J]. J Opt Soc Am, 1951, 41(6): 416-419.
|
8 |
ZHOU G Q, XU J, CHEN X D, et al. Growth and spectrum of a novel birefringent α-BaB2O4 crystal [J]. J Cryst Growth, 1998, 191(3): 517-519.
|
9 |
DODGE M J. Refractive properties of magnesium fluoride[J]. Appl Opt, 1984, 23(12): 1980-1985.
|
10 |
HUANG W Q, ZHANG X, LI Y Q, et al. A hybrid halide perovskite birefringent crystal[J]. Angew Chem Int Ed, 2022, 61: e202202746.
|
11 |
NIU S Y, JOE G, ZHAO H, et al. Giant optical anisotropy in a quasi-one-dimensional crystal[J]. Nat Photonics, 2018, 12(7): 392-397.
|
12 |
MUTAILIPU M, POEPPELMEIER K R, PAN S L. Borates: a rich source for optical materials[J]. Chem Rev, 2021, 121(3): 1130-1202.
|
13 |
ZHAO S G, GONG P F, LUO S Y, et al. Beryllium-free Rb3Al3B3O10F with reinforced inter layer bonding as a deep-ultraviolet nonlinear optical crystal[J]. J Am Chem Soc, 2015, 137(6): 2207-2210.
|
14 |
SHI X P, TUDI A, CHENG M, et al. Noncentrosymmetric rare-earth borate fluoride La2B5O9F3: a new ultraviolet nonlinear optical crystal with enhanced linear and nonlinear performance[J]. ACS Appl Mater Interfaces, 2022, 14(16): 18704-18712.
|
15 |
HUANG C, MUTAILIPU M, ZHANG F, et al. Expanding the chemistry of borates with functional [BO2]- anions[J]. Nat Commun, 2021, 12(1): 1-8.
|
16 |
BAIHETI T, HAN S J, JIN W Q, et al. Cs2AlB5O10: a short-wavelength nonlinear optical crystal with moderate second harmonic generation response[J]. Dalton Trans, 2021, 50(3): 822-825.
|
17 |
NEUMAIR S C, VANICEK S, KAINDL R, et al. HP-KB3O5 highlights the structural diversity of borates: corner-sharing BO3/BO4 groups in combination with edge-sharing BO4 tetrahedra[J]. Eur J Inorg Chem, 2011, (27): 4147-4152.
|
18 |
YAO W J, HUANG H W, YAO J Y, et al. Sr3BeB6O13: a new borate in the SrO/BeO/B2O3 system with novel tri-six-membered ring (BeB6O15)10- building block[J]. Inorg Chem, 2013, 52(10): 6136-6141.
|
19 |
WANG S, YE N, LI W, et al. Alkaline beryllium borate NaBeB3O6 and ABe2B3O7 (A=K, Rb) as UV nonlinear optical crystals[J]. J Am Chem Soc, 2010, 132(25): 8779-8786.
|
20 |
YU H, WU H, JING Q, et al. Polar polymorphism: α-, β-, and γ-Pb2Ba4Zn4B14O31 synthesis, characterization, and nonlinear optical properties[J]. Chem Mater, 2015, 27(13): 4779-4788.
|
21 |
ZHANG M, SU X, PAN S L, et al. Linear and nonlinear optical properties of K3B6O10Br single crystal: experiment and calculation[J]. J Phys Chem C, 2014, 118(22): 11849-11856.
|
22 |
CHEN C T, WU B C, JIANG A D, et al. A new-type ultraviolet SHG crystal-β-BaB2O4[J]. Sci China Ser B, 1985, 28(3): 235-243.
|
23 |
CHEN C T, WU Y C, JIANG A D, et al. New nonlinear-optical crystal: LiB3O5[J]. J Opt Soc Am B, 1989, 6(4): 616-621.
|
24 |
ZHANG M, AN D H, HU C, et al. Rational design via synergistic combination leads to an outstanding deep-ultraviolet birefringent Li2Na2B2O5 material with an unvalued B2O5 functional gene[J]. J Am Chem Soc, 2019, 141(7): 3258-3264.
|
25 |
WU Y C, SASAKI T, NAKAI S, et al. CsB3O5: a new nonlinear optical crystal[J]. Appl Phys Lett, 1993, 62(21): 2614-2615.
|
26 |
WU S F, WANG G F, XIE J L, et al. Growth of large birefringent α-BBO crystal[J]. J Cryst Growth, 2002, 245(1/2): 84-86.
|
27 |
CHEN X L, ZHANG B B, ZHANG F F, et al. Designing an excellent deep-ultraviolet birefringent material for light polarization[J]. J Am Chem Soc, 2018, 140(47): 16311-16319.
|
28 |
XIA Y N, CHEN C T, TANG D Y, et al. New nonlinear-optical crystals for UV and VUV harmonic-generation[J]. Adv Mater, 1995, 7(1): 79-81.
|
29 |
WU H P, PAN S L, POEPPELMEIER K R, et al. K3B6O10Cl: a new structure analogous to perovskite with a large second harmonic generation response and deep UV absorption edge[J]. J Am Chem Soc, 2011, 133(20): 7786-7790.
|
30 |
CHEN Z H, PAN S L, DONG X Y, et al. Exploration of a new compound in the M-B-O-X (M: alkali metals; X: halogen) system: preparation, crystal and electronic structures, and optical properties of Na3B6O10Br[J]. Inorg Chim Acta, 2013, 406: 205-210.
|
31 |
BAI C Y, YU H W, HAN S J, et al. Effect of halogen (Cl, Br) on the symmetry of flexible perovskite-related framework[J]. Inorg Chem, 2014, 53(20): 11213-11220.
|
32 |
ZHOU J J, LIU Y Q, WU H P, et al. CsZn2BO3X2(X2=F2, Cl2, and FCl): a series of beryllium-free deep-ultraviolet nonlinear-optical crystals with excellent properties[J]. Angew Chem Int Ed, 2020, 59(43): 19006-19010.
|
33 |
BUBNOVA R S, FILATOV S K. High-temperature borate crystal chemistry[J]. Z Kristallogr, 2013, 228(9): 395-428.
|
34 |
SHANNON R T, PREWITT C T. Effective ionic radii in oxides and fluorides[J]. Acta Crystallogr Sect B Struct Sci, 1969, 25(5): 925-946.
|
35 |
WEST J P, HWU S J. Noncentrosymmetric salt inclusion oxides: role of salt lattices and counter ions in bulk polarity[J]. J Solid State Chem, 2012, 195: 101-107.
|
36 |
VOLKOV S N, CHARKIN D O, ARSENT'EV M Y, et al. Bridging the salt-inclusion and open-framework structures: the case of acentric Ag4B4O7X2 (X=Br, I) borate halides[J]. Inorg Chem, 2020, 59(5): 2655-2658.
|
37 |
VOLKOV S N, CHARKIN D O, MANELIS L S, et al. A new salt-inclusion compound, | Ag4Br |@[B7O12], with a novel type of the porous double-layered borate anion and strong anharmonicity of the “guest” sublattice[J]. Solid State Sci, 2022, 125: 106831-106840.
|
38 |
KOHN W. Nobel lecture: electronic structure of matter-wave functions and density functionals[J]. Rev Mod Phys, 1999, 71(5): 1253-1266.
|
39 |
CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP[J]. Z Kristallogr, 2005, 220(5/6): 567-570.
|
40 |
PAYNE M C, TETER M P, ALLAN D C, et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients[J]. Rev Mod Phys, 1992, 64(4): 1045-1097.
|
41 |
MEDVEDEV M G, BUSHMARINOV I S, SUN J, et al. Density functional theory is straying from the path toward the exact functional[J]. Science, 2017, 355(6320): 49-52.
|
42 |
MONKSHORT H, PACK J. Special points for brillouin-zone integration[J]. Phys Rev B Condens Matter, 1976, 13: 5188-5192.
|
43 |
LI Y Q, LUO J H, JI X H, et al. A short-wave UV nonlinear optical sulfate of high thermal stability[J]. Chin J Struct Chem, 2020, 39(3): 485-492.
|
44 |
夏树屏, 高世扬, 李军, 等. 硼酸盐的红外光谱[J]. 盐湖研究, 1995, 3(3): 49-53.
|
|
XIA S P, GAO S Y, LI J, et al. IR-spectra of borate[J]. J Salt Lake Res, 1995, 3(3): 49-53.
|
45 |
TAUC J. Absorption edge and internal electric fields in amorphous semiconductors[J]. Mater Res Bull, 1970, 5(8): 721-729.
|
46 |
宋宽广, 李建, 高潮, 等. 三氟丙炔基类液晶的合成及性能[J]. 应用化学, 2017, 34(6): 676-684.
|
|
SONG K G, LI J, GAO C, et al. Synthesis and properties of liquid crystals with 3,3,3-trifluoropropynyl terminal group[J]. Chin J Appl Chem, 2017, 34(6): 676-684.
|
47 |
关晓琳, 张扬, 范红婷, 等. 新型含萘基和二乙炔基高双折射液晶分子的合成及光电性能[J]. 应用化学, 2016, 33(5): 533-541.
|
|
GUAN X L, ZHANG Y, FAN H T, et al. Synthesis and photoelectric properties of novel liquid crystalline compound bearing diethynyl and naphthyl groups with high birefringence[J]. Chin J Appl Chem, 2016, 33(5): 533-541.
|
48 |
WANG C S, KLEIN B M. 1st-Principles electronic-structure of Si, Ge, GaP, GaAs, ZnS, and ZnSe.1.self-consistent energy-bands, charge-densities, and effective masses[J]. Phys Rev B Condens Matter, 1981, 24(6): 3393-3416.
|