应用化学 ›› 2022, Vol. 39 ›› Issue (11): 1680-1692.DOI: 10.19894/j.issn.1000-0518.210566
王兴玥1, 高冷1(), 戚良晨2(), 高晓晨(), 丁磊2, 戚译天2, 崔本海, 尉松瑶1, 李航1
收稿日期:
2021-02-13
接受日期:
2022-07-08
出版日期:
2022-11-01
发布日期:
2022-11-09
通讯作者:
高冷,戚良晨,高晓晨
基金资助:
Xing-Yu WANG1, Leng GAO1(), Liang-Chen QI2(), Xiao-Chen GAO(), Lei DING2, Yi-Tian QI2, Ben-Hai CUI, Song-Yao YU1, Hang LI1
Received:
2021-02-13
Accepted:
2022-07-08
Published:
2022-11-01
Online:
2022-11-09
Contact:
Leng GAO,Liang-Chen QI,Xiao-Chen GAO
About author:
gao_xiaochen@hotmailSupported by:
摘要:
对向海雁鹅血抗肺癌的活性成分、潜在作用靶点及信号通路进行研究,并应用分子对接技术探索其抗肺癌可能的作用机制。利用高效液相色谱-质谱联用技术(HPLC-MS/MS)分析向海雁鹅血活性物质的成分;采用网络药理学筛选靶点,分析信号通路,构建向海雁鹅血活性物质“成分-靶点-通路”网络;利用细胞增殖检测(CCK-8)细胞活力测定法检测向海雁鹅血提取物对4种人癌细胞活力影响;运用分子对接核心靶点与向海雁鹅血活性成分;实时定量聚合酶链反应检测(qPCR)检测向海雁鹅血提取物对人肺癌A549细胞p-AKT1的mRNA表达的影响。结果分析出Pro、H-Asn-Asp-Asp-Met-OH、Thr-Thr-Asn-Tyr-Thr-Asp、和Ala-Trp-Met-Asp-Phe-Val 4种向海雁鹅血活性成分;获得相关靶点258个,其中核心靶点46个;GO基因富集分析涉及AKT1、IL1BS、SRC等关键靶点;KEGG信号通路富集涉及癌症信号通路等;向海雁鹅血提取物对4种人癌细胞的细胞活力均有抑制,其中对人肺癌A549细胞的抑制效果最明显;向海雁鹅血活性成分的核心靶点与肺癌靶点相映射结果显示是通过AKT1、IL1BS、SRC等关键靶点起到抑制A549的作用;分子对接结果显示:H-Asn-Asp-Asp-Met-OH与ATK1的结合能最高;qPCR检测结果显示,向海雁鹅血提取物能够显著减低A549细胞p-AKT1的mRNA的含量水平。向海雁鹅血活性物质通过多靶点、多通路的形式诱导人肺癌A549细胞凋亡,为向海雁鹅血抗肺癌的活性物质研究与开发提供了新的思路和方向。
中图分类号:
王兴玥, 高冷, 戚良晨, 高晓晨, 丁磊, 戚译天, 崔本海, 尉松瑶, 李航. 基于网络药理学及分子对接技术研究向海雁鹅血的抗肺癌活性成分[J]. 应用化学, 2022, 39(11): 1680-1692.
Xing-Yu WANG, Leng GAO, Liang-Chen QI, Xiao-Chen GAO, Lei DING, Yi-Tian QI, Ben-Hai CUI, Song-Yao YU, Hang LI. Study on Anti⁃Lung Cancer Active Ingredients from Blood of Xianghai Wild Goose Based on Network Pharmacology and Molecular Docking Technology[J]. Chinese Journal of Applied Chemistry, 2022, 39(11): 1680-1692.
图 1 向海雁鹅血提取物的一级质谱图A.P1的一级质谱图; B.P2的一级质谱图; C.P3的一级质谱图; D.P4的一级质谱图
Fig.1 Ion diagram of blood extract of Xianghai wild gooseA. Primary mass spectrometry of P1; B. Primary mass spectrometry of P2; C. Primary mass spectrometry of P3; D. Primary mass spectrometry of P4
序列的名称 Sequence is referred to as | MS m/z | MS2 m/z | 序列 Sequence | 保留时间 Retention time/min | 相对分子质量 Relative molecular mass |
---|---|---|---|---|---|
P1 | 116.928[M-H]- | 131.13, 102.58 | Pro | 42.934 | 117.931 1 |
P2 | 639.3180[M+H]+ | 282.41, 265.23 | H?Asn?Asp?Asp?Met?OH | 40.407 | 638.317 7 |
P3 | 695.4780[M-H]- | 238.23, 246.41, 200.67 | Thr?Thr?Asn?Tyr?Thr?Asp | 48.393 | 696.488 0 |
P4 | 758.4618[M+H]+ | 293.32, 242.31, 222.34, 154.31 | Ala?Trp?Met?Asp?Phe?Val | 47.824 | 757.461 8 |
表1 向海雁鹅血的成分分析
Table 1 Component analysis of blood of Xianghai wild goose
序列的名称 Sequence is referred to as | MS m/z | MS2 m/z | 序列 Sequence | 保留时间 Retention time/min | 相对分子质量 Relative molecular mass |
---|---|---|---|---|---|
P1 | 116.928[M-H]- | 131.13, 102.58 | Pro | 42.934 | 117.931 1 |
P2 | 639.3180[M+H]+ | 282.41, 265.23 | H?Asn?Asp?Asp?Met?OH | 40.407 | 638.317 7 |
P3 | 695.4780[M-H]- | 238.23, 246.41, 200.67 | Thr?Thr?Asn?Tyr?Thr?Asp | 48.393 | 696.488 0 |
P4 | 758.4618[M+H]+ | 293.32, 242.31, 222.34, 154.31 | Ala?Trp?Met?Asp?Phe?Val | 47.824 | 757.461 8 |
图2 向海雁鹅血提取物的二级质谱图A.P1的二级质谱图;B.P2的二级质谱图;C.P3的二级质谱图;D.P4的二级质谱图
Fig.2 HPLC-MS/M diagram of blood extract of Xianghai wild gooseA.Secondary mass spectrometry of P1; B.Secondary mass spectrometry of P2; C.Secondary mass spectrometry of P3; D.Secondary mass spectrometry of P4
序号 No | 靶基因 Target gene | Uniprot号 Uniprot ID | 分值 Degree | 中间性 Betweenness |
---|---|---|---|---|
1 | AKT1 | P31749 | 29 | 0.185 300 77 |
2 | IL1B | P01584 | 25 | 0.093 528 61 |
3 | SRC | P12931 | 24 | 0.054 877 542 |
4 | STAT3 | P40763 | 23 | 0.038 312 361 |
5 | MMP9 | P14780 | 23 | 0.097 766 285 |
6 | CCND1 | P24385 | 23 | 0.107 308 794 |
7 | PTGS2 | P35354 | 21 | 0.038 657 455 |
8 | PPARG | P37231 | 18 | 0.049 061 253 |
9 | PTPRC | P08575 | 17 | 0.016 145 049 |
10 | MMP2 | P08253 | 16 | 0.012 973 006 |
11 | CXCR4 | P61073 | 16 | 0.007 261 231 |
12 | ACE | P12821 | 15 | 0.109 809 703 |
13 | ITGB3 | P05106 | 13 | 0.011 074 069 |
14 | MMP3 | P08254 | 13 | 0.016 397 264 |
15 | STAT6 | P42226 | 12 | 0.006 726 181 |
16 | ITGAB | P08514 | 12 | 0.012 065 652 |
17 | MMP1 | P03956 | 12 | 0.003 050 891 |
18 | PPARA | Q07869 | 12 | 0.049 940 26 |
19 | LCK | P06239 | 11 | 0.008 413 839 |
20 | HDAC1 | Q13547 | 11 | 0.022 704 334 |
21 | CDK4 | P11802 | 11 | 0.028 340 693 |
22 | GRB2 | P62993 | 10 | 0.008 724 547 |
23 | F2R | P25116 | 8 | 0.000 731 |
24 | XIAP | P98170 | 8 | 0.000 432 |
25 | DLG4 | P78352 | 7 | 0.086 969 697 |
26 | NCOR2 | Q9Y618 | 7 | 0.006 496 976 |
27 | MME | P08473 | 7 | 0.002 516 106 |
28 | TYMS | P04818 | 6 | 0.091 121 702 |
29 | KDM1A | O60341 | 6 | 0.000 381 |
30 | MMP16 | P51512 | 6 | 0.000 414 |
31 | MMP8 | P22894 | 6 | 0.000 577 |
32 | HLA?DRB1 | P01911 | 5 | 0.001 129 011 |
33 | HMGCR | P04035 | 4 | 0.000 176 |
34 | PLA2G2A | P14555 | 3 | 0.449 677 |
35 | EDNRB | P24530 | 3 | 0.002 895 623 |
36 | RRM1 | P23921 | 3 | 0.000 758 |
37 | CTRB1 | P17538 | 2 | 0.000 055 2 |
38 | SLC6A1 | P30531 | 2 | 0.000 489 |
39 | GABRG2 | P18507 | 2 | 0.000 753 7 |
40 | EPHX2 | P34913 | 2 | 0.001 278 368 |
41 | FOLR1 | P15328 | 2 | 0.976 578 |
42 | ECE1 | P42892 | 2 | 0.478 59 |
43 | SLC19A1 | P41440 | 2 | 0.775 669 |
44 | SLC5A2 | P31639 | 2 | 0.674 793 |
45 | PSMB10 | P40306 | 1 | 0.673 984 |
46 | NMBR | P28336 | 1 | 0.898 09 |
表2 46个关键靶点的拓扑参数
Table 2 Topological parameters of 46 key targets
序号 No | 靶基因 Target gene | Uniprot号 Uniprot ID | 分值 Degree | 中间性 Betweenness |
---|---|---|---|---|
1 | AKT1 | P31749 | 29 | 0.185 300 77 |
2 | IL1B | P01584 | 25 | 0.093 528 61 |
3 | SRC | P12931 | 24 | 0.054 877 542 |
4 | STAT3 | P40763 | 23 | 0.038 312 361 |
5 | MMP9 | P14780 | 23 | 0.097 766 285 |
6 | CCND1 | P24385 | 23 | 0.107 308 794 |
7 | PTGS2 | P35354 | 21 | 0.038 657 455 |
8 | PPARG | P37231 | 18 | 0.049 061 253 |
9 | PTPRC | P08575 | 17 | 0.016 145 049 |
10 | MMP2 | P08253 | 16 | 0.012 973 006 |
11 | CXCR4 | P61073 | 16 | 0.007 261 231 |
12 | ACE | P12821 | 15 | 0.109 809 703 |
13 | ITGB3 | P05106 | 13 | 0.011 074 069 |
14 | MMP3 | P08254 | 13 | 0.016 397 264 |
15 | STAT6 | P42226 | 12 | 0.006 726 181 |
16 | ITGAB | P08514 | 12 | 0.012 065 652 |
17 | MMP1 | P03956 | 12 | 0.003 050 891 |
18 | PPARA | Q07869 | 12 | 0.049 940 26 |
19 | LCK | P06239 | 11 | 0.008 413 839 |
20 | HDAC1 | Q13547 | 11 | 0.022 704 334 |
21 | CDK4 | P11802 | 11 | 0.028 340 693 |
22 | GRB2 | P62993 | 10 | 0.008 724 547 |
23 | F2R | P25116 | 8 | 0.000 731 |
24 | XIAP | P98170 | 8 | 0.000 432 |
25 | DLG4 | P78352 | 7 | 0.086 969 697 |
26 | NCOR2 | Q9Y618 | 7 | 0.006 496 976 |
27 | MME | P08473 | 7 | 0.002 516 106 |
28 | TYMS | P04818 | 6 | 0.091 121 702 |
29 | KDM1A | O60341 | 6 | 0.000 381 |
30 | MMP16 | P51512 | 6 | 0.000 414 |
31 | MMP8 | P22894 | 6 | 0.000 577 |
32 | HLA?DRB1 | P01911 | 5 | 0.001 129 011 |
33 | HMGCR | P04035 | 4 | 0.000 176 |
34 | PLA2G2A | P14555 | 3 | 0.449 677 |
35 | EDNRB | P24530 | 3 | 0.002 895 623 |
36 | RRM1 | P23921 | 3 | 0.000 758 |
37 | CTRB1 | P17538 | 2 | 0.000 055 2 |
38 | SLC6A1 | P30531 | 2 | 0.000 489 |
39 | GABRG2 | P18507 | 2 | 0.000 753 7 |
40 | EPHX2 | P34913 | 2 | 0.001 278 368 |
41 | FOLR1 | P15328 | 2 | 0.976 578 |
42 | ECE1 | P42892 | 2 | 0.478 59 |
43 | SLC19A1 | P41440 | 2 | 0.775 669 |
44 | SLC5A2 | P31639 | 2 | 0.674 793 |
45 | PSMB10 | P40306 | 1 | 0.673 984 |
46 | NMBR | P28336 | 1 | 0.898 09 |
GO生物过程富集 GO bioprocess enrichment | 序号 ID | 条目名称 The entry name | 靶点数 Number of targets | 占比百分数 Number of the score/% |
---|---|---|---|---|
BP BP | GO:0516033 GO:1901652 | Small cell lung cancer Response to peptide | 46 46 | 100 100 |
BP BP CC CC CC CC MF MF MF MF | GO:0050727 GO:0001934 GO:0043408 GO:0015908 GO:0051235 GO:0009991 GO:0048871 GO:0070141 GO:0058903 GO:0004780 | Regulation of inflammatory response Positive regulation of protein Phosphorylation Pathway name Regulation of MAPK cascade Fatty acid transport Maintenance of location Response to extracellular stimulus Multicellular organismal homeostasis Response to UV?A Estrogen signaling pathway | 41 40 46 42 41 38 46 44 39 36 | 89 87 100 91 89 83 100 96 85 78 |
表3 GO 富集分析结果
Table 3 GO enrichment analysis results
GO生物过程富集 GO bioprocess enrichment | 序号 ID | 条目名称 The entry name | 靶点数 Number of targets | 占比百分数 Number of the score/% |
---|---|---|---|---|
BP BP | GO:0516033 GO:1901652 | Small cell lung cancer Response to peptide | 46 46 | 100 100 |
BP BP CC CC CC CC MF MF MF MF | GO:0050727 GO:0001934 GO:0043408 GO:0015908 GO:0051235 GO:0009991 GO:0048871 GO:0070141 GO:0058903 GO:0004780 | Regulation of inflammatory response Positive regulation of protein Phosphorylation Pathway name Regulation of MAPK cascade Fatty acid transport Maintenance of location Response to extracellular stimulus Multicellular organismal homeostasis Response to UV?A Estrogen signaling pathway | 41 40 46 42 41 38 46 44 39 36 | 89 87 100 91 89 83 100 96 85 78 |
通路 Pathways | 富集 Enrichment | P值 P value | 计数 Count |
---|---|---|---|
Pathways in cancer PI3K?ATK signaling pathway Carcinoma of the lungs signaling pathway Cell cycle RAS signaling pathway IL?2 signaling pathway Hepatitis B MicroRNAs in cancer TNF signaling pathway T cell receptor signaling pathway | 0.110 25 0.020 00 0.017 14 0.025 00 0.031 25 0.062 50 0.037 73 0.050 00 0.044 64 0.049 50 | 0.000 000 000 000 739 0.000 270 000 000 000 0.000 060 000 000 000 0.001 920 000 000 000 0.001 092 000 000 000 0.000 000 500 000 000 0.000 054 800 000 000 0.000 000 441 000 000 0.000 140 000 000 000 0.000 099 500 000 000 | 10 7 6 3 5 7 6 8 5 5 |
表4 KEGG分析结果
Table 4 KEGG analysis result
通路 Pathways | 富集 Enrichment | P值 P value | 计数 Count |
---|---|---|---|
Pathways in cancer PI3K?ATK signaling pathway Carcinoma of the lungs signaling pathway Cell cycle RAS signaling pathway IL?2 signaling pathway Hepatitis B MicroRNAs in cancer TNF signaling pathway T cell receptor signaling pathway | 0.110 25 0.020 00 0.017 14 0.025 00 0.031 25 0.062 50 0.037 73 0.050 00 0.044 64 0.049 50 | 0.000 000 000 000 739 0.000 270 000 000 000 0.000 060 000 000 000 0.001 920 000 000 000 0.001 092 000 000 000 0.000 000 500 000 000 0.000 054 800 000 000 0.000 000 441 000 000 0.000 140 000 000 000 0.000 099 500 000 000 | 10 7 6 3 5 7 6 8 5 5 |
向海雁鹅血提取物 Xianghai wild goose blood extract | 结合能 Binding energy/(kJ·mol-1) | ||||||||
---|---|---|---|---|---|---|---|---|---|
AKT1 | SRC | MMP9 | STAT3 | IL1BS | PPARG | ITGB3 | MMP16 | RRM1 | |
P1 P2 P3 P4 | -54.76 -63.50 -50.23 -43.53 | -51.07 -61.12 -48.56 -41.90 | -40.60 -42.69 -40.19 -39.77 | -33.49 -35.99 -33.49 -39.35 | -33.90 -36.84 -40.19 -37.26 | -35.58 -33.49 -37.26 -35.58 | -35.16 -35.16 -36.42 -36.84 | -36.42 -34.33 -35.16 -36.42 | -33.90 -35.99 -35.16 -33.49 |
表5 向海雁鹅血P1、P2、P3和P4与肺癌靶蛋白分子对接结果
Table 5 Results of the docking of P1, P2, P3 and P4 with lung cancer target protein molecules from Xianghai wild goose blood
向海雁鹅血提取物 Xianghai wild goose blood extract | 结合能 Binding energy/(kJ·mol-1) | ||||||||
---|---|---|---|---|---|---|---|---|---|
AKT1 | SRC | MMP9 | STAT3 | IL1BS | PPARG | ITGB3 | MMP16 | RRM1 | |
P1 P2 P3 P4 | -54.76 -63.50 -50.23 -43.53 | -51.07 -61.12 -48.56 -41.90 | -40.60 -42.69 -40.19 -39.77 | -33.49 -35.99 -33.49 -39.35 | -33.90 -36.84 -40.19 -37.26 | -35.58 -33.49 -37.26 -35.58 | -35.16 -35.16 -36.42 -36.84 | -36.42 -34.33 -35.16 -36.42 | -33.90 -35.99 -35.16 -33.49 |
图9 向海雁鹅血P1、P2、P3、P4与核心靶点分子对接图注:A图为向海雁鹅血P1、P2、P3、P4与AKT1分子对接图;B图为向海雁鹅血P1、P2、P3、P4与SRC分子对接图;C图为向海雁鹅血P1、P2、P3、P4与MMP9的分子对接图
Fig.9 Docking diagram of blood P1, P2, P3, P4 and core target molecules in Xianghai wild GooseA. The docking diagram of AKT1 with P1, P2, P3 and P4 Xianghai wild goose blood; B. The docking diagram of SRC molecule with P1, P2, P3 and P4 in the blood of Xianghai wild goose; C. The molecular docking diagram of IL1BS with the P1, P2, P3 and P4 in the blood of Haiyan Goose
1 | 王志新. 科学引领大雁产业发展[J]. 吉林林业科技, 2018, 47(6): 41-43. |
WANG Z X. Science leads the development of wild goose industry[J]. Jilin Forestry Sci Technol, 2018, 47(6): 41-43. | |
2 | 布冠好, 姬莉莉, 王琳珍, 等. 鹅血红蛋白抗氧化活性肽的制备及工艺研究[J]. 食品工业科技, 2013, 34(3): 201-204. |
BU G H,JI L L,WANG L Z, et al. Study on preparation and technology of antioxidative active peptide of goose hemoglobin[J]. Sci Technol Food Ind, 2013, 34(3): 201-204. | |
3 | 王铮, 赵宇, 高晓晨, 等. 鸿雁雁血多肽的制备及免疫调节作用的初步研究[J]. 食品工业科技, 2020, 41(13): 65-71. |
WANG Z, ZHAO Y, GAO X C, et al. Preparation of blood polypeptide of Hongyan goose and preliminary study on its immunomodulatory effect[J]. Sci Technol Food Ind, 2020, 41(13): 65-71. | |
4 | 李航森, 邹季, 王茹凤, 等. 鹅血抗癌制剂: 中国, 1254561[P]. 2000-5-31. |
LI H S, ZOU J, WANG R F, et al. Anti-cancer preparation of goose blood: CN, 1254561[P]. 2000-5-31. | |
5 | 徐国强, 张尤历, 袁英雪, 等. 鹅血有效组分对胃癌细胞增殖的影响及其蛋白质谱鉴定[J]. 基因组学与应用生物学, 2018, 37(8): 3719-3725. |
XU G Q, ZHANG Y L, YUAN Y X, et al. Effect of goose blood composition on the proliferation of gastric cancer cells and its protein spectrometry identification[J]. Gen Appl Biol, 2018, 37(8): 3719-3725. | |
6 | LI F, DUAN J L, ZHAO M N, et al. A network pharmacology approach to reveal the protective mechanism of Salvia miltiorrhiza-Dalbergia odorifera coupled-herbs on coronary heart disease[J]. Sci Rep, 2019, 9(1): 19343-19343. |
7 | 邹翔, 张月, 汲晨锋, 等. 基于网络药理学的青龙衣抗肿瘤潜在分子机制探讨[J]. 哈尔滨医科大学学报, 2019, 53(5): 459-464. |
ZOU X, ZHNAG Y J, WANG H X, et al. Potential molecular mechanism of anti-tumor activity of Qinglongyi based on network pharmacology[J]. J Harbin Med Univ, 2019, 53(5): 459-464. | |
8 | 吕经纬, 李晶峰, 边学峰, 等. 基于“成分-靶点-通路”的鹿茸网络药理学研究[J]. 中国现代中药, 2019, 21(9): 1236-1245. |
LYU J W, LI J F, BIAN X F,et al. Research on the pharmacology of antler antler network based on “component-target-pathway”[J]. Modern Chinese Tradition Med, 2019, 21(9): 1236-1245. | |
9 | 丁文评, 陆元元, 李琴, 等. 氯喹对MCF7细胞增殖的抑制作用及其机制[J]. 现代肿瘤医学, 2018, 26(12): 1831-1834. |
DING W P, LU Y Y, LI Q, et al. Inhibitory effect of chloroquine on MCF7 cell proliferation and its mechanism[J]. 2018, 26(12): 1831-1834. | |
10 | 李梅青, 王康, 周鑫. 绿豆活性肽对HepG2结肠癌细胞增殖的抑制作用[J]. 中国食品学报, 2018, 18(10): 52-57. |
LI M Q, WANG K, ZHOU X. Inhibitory effect of mung bean active peptide on proliferation of HepG2 colon cancer cells[J]. Chinese J Food Sci, 2018, 18(10): 52-57. | |
11 | MILNE G W A. Software review of ChemBioDraw 12.0[J]. Chem Inf Model, 2010, 50: 2053. |
12 | WEI J S, ZHANG J L, CHEN X Q, et al. Exploring the biomolecular mechanism of resveratrol in the treatment of nephrotic syndrome based on network pharmacology[J]. Pharmacol Res-Mod Chinese Med, 2022, 3: 100114. |
13 | 刘敏, 吴霞, 李羿南, 等. 基于网络药理学和分子对接探讨虎杖治疗肝癌的生物分子机制[J]. 山西中医, 2021, 37(11): 44-48. |
LIU M, WU X, LI Y N, et al. Study on the biomolecular mechanism of polygonum cuspidatum for hepatocellular carcinoma based on network pharmacology and molecular connection[J]. Shanxi Tradition Chinese Med, 2021, 37(11): 44-48. | |
14 | 王洁. 林蛙骨肉小肽的制备与结构鉴定及其对RAW264.7细胞的免疫调节作用[D]. 长春: 吉林大学, 2020. |
WANG J. Preparation structure identification and immunomodulatory effect of small peptides from rana chensinensis on RAW264.7 cells[D]. Changchun: Jilin University, 2020. | |
15 | 束王慧. 鲟鱼抗炎多肽的制备与鉴定及其作用机制研究[D]. 苏州: 江苏大学, 2020. |
SHU W H. Preparation and identification of sturgeon anti-inflammatory peptides and their mechanism of action[D]. Suzhou: Jiangsu University, 2020. | |
16 | 贾红梅, 唐策, 刘欢, 等. 基于网络药理学的香附抗抑郁作用机制研究[J]. 药物评价研究, 2019, 42(1): 49-55. |
JIA H M, TANG C, LIU H, et al. Study on the anti-depression mechanism of Cyperus officinalis based on network pharmacology[J]. Drug Evaluat Stud, 2019, 42(1): 49-55. | |
17 | 张丽慧, 耿其顺, 朱子家, 等. 基于网络药理学探讨白藜芦醇治疗肺癌的生物分子机制[J]. 中国中医药信息杂志, 2021, 28(6): 46-51. |
ZHENG L H, GENG Q S, ZHU Z J, et al. To explore the biomolecular mechanism of resveratrol in the treatment of lung cancer based on network pharmacology[J]. Chinese Trad Chinese Med Inf, 2021, 28(6): 46-51. | |
18 | 姚嘉良, 王盼盼, 张龙, 等. 基于网络药理学和分子对接技术探讨酸枣仁汤治疗肺癌相关性失眠的作用机制[J]. 中药新药与临床药理, 2022, 33(6): 813-824. |
YAO J L, WANG P P, ZHANG L, et al. Effect of Suanzaoren decoction on insomnia associated with lung cancer[J]. New Chinese Med Clin Pharmacol, 2022, 33(6): 813-824. | |
19 | KUNYI HSIN, SAMILK GHOSH, HIROAKI KITANO. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology[J]. PLoS ONE, 2018, 8(12): e83922-e83922. |
[1] | 李谋翠, 董洋铭, 任莹辉, 马海霞, 齐乐. 含1,2,4-三唑双席夫碱衍生物的合成、抗菌活性及分子对接[J]. 应用化学, 2023, 40(1): 116-125. |
[2] | 尹广婷, 周雪健, 姚红柳, 付金凤, 曹洪玉, 郑学仿, 苏丽红. 多光谱法与分子对接模型研究西维来司钠与弹性蛋白酶的相互作用[J]. 应用化学, 2022, 39(6): 960-968. |
[3] | 邓培渊, 袁伟, 李长看, 陈龙欣, 杨莹莹. 防腐剂苯甲酸与人血清白蛋白相互作用[J]. 应用化学, 2021, 38(8): 1014-1021. |
[4] | 张振华, 解玉丽, 王铁军, 赵虹, 唐存多, 阚云超, 姚伦广. 甲酸脱氢酶催化活性的定向进化及其高效表达[J]. 应用化学, 2021, 38(6): 704-712. |
[5] | 丁雅丽, 胡响响, 冯玄, 张然, 石彤非, 卫来. 小分子促进抗冻蛋白抗冻效果的分子机制[J]. 应用化学, 2021, 38(12): 1612-1620. |
[6] | 张成路, 王华玉, 李奕嶙, 王一鸣, 宫荣庆, 孙越冬, 宋府璐. 4-苯基-1,3-硒唑衍生物的合成及其对蛋白酪氨酸磷酸酯酶-1B抑制活性[J]. 应用化学, 2019, 36(7): 749-757. |
[7] | 张成路, 王华玉, 李奕嶙, 王一鸣, 宫荣庆, 孙越冬, 宋府璐. 4-苯基-1,3-硒唑衍生物的合成及其对蛋白酪氨酸磷酸酯酶-1B抑制活性[J]. 应用化学, 2019, 36(7): 0-0. |
[8] | 何蔚, 邹嘉佳, 逯东伟, 程辉, 林翠梧. 两种组氨酸酰胺衍生物的合成及其与人血清白蛋白的结合[J]. 应用化学, 2017, 34(10): 1150-1160. |
[9] | 任旭东, 夏冬辉, 李华. 分子对接预测手性化合物在蛋白质固定相色谱柱上的保留行为[J]. 应用化学, 2012, 29(11): 1324-1328. |
[10] | 孟翔宇, 皮子凤, 宋凤瑞, 刘志强, 刘淑莹. 麻黄-甘草药对配伍过程中的主要药效成分的分析[J]. 应用化学, 2009, 26(07): 801-806. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||