应用化学 ›› 2022, Vol. 39 ›› Issue (11): 1693-1702.DOI: 10.19894/j.issn.1000-0518.220004
收稿日期:
2022-01-05
接受日期:
2022-07-06
出版日期:
2022-11-01
发布日期:
2022-11-09
通讯作者:
尚亚卓
基金资助:
Jing-Wen WANG, Ya-Wen LYU, Ya-Zhuo SHANG(), Hong-Lai LIU
Received:
2022-01-05
Accepted:
2022-07-06
Published:
2022-11-01
Online:
2022-11-09
Contact:
Ya-Zhuo SHANG
About author:
shangyazhuo@ecust.edu.cnSupported by:
摘要:
大米淀粉颗粒粒径较小且均匀,在水中有较好的分散性,具有良好的成膜性并且可以在自然中降解,在食品包装、医用敷料及化妆品行业中有着广泛的应用。以大米淀粉为原料,NaOH为糊化剂,甘油为增塑剂,柠檬酸为交联剂和pH调节剂,采用流延法制备了淀粉膜。通过对淀粉颗粒的形貌观察及糊化温度、淀粉溶液的表观粘度及pH值测定、淀粉膜的力学性能、透光率及承载甘草酸二钾释放性能等的测定,研究了大米淀粉的糊化条件,柠檬酸、淀粉和甘油质量分数对淀粉膜性质的影响以及承载物质的释放情况。结果表明,大米淀粉呈光滑的多边形颗粒,直径为5~8 μm,在偏光显微镜下呈现马耳他十字结构,糊化温度范围为82.5~100.8 ℃。柠檬酸在淀粉成膜过程中会与淀粉分子相互作用,同时能够调节溶液的pH值以适应人体皮肤。淀粉质量分数越高,淀粉膜断裂伸长率越低,拉伸强度越高;甘油质量分数越高,淀粉膜断裂伸长率越高,拉伸强度越低。在甘油质量分数为3.0%时淀粉膜透光率最佳,结晶度最低。制备的淀粉膜能够承载且能高效释放抗炎物质甘草酸二钾,在护肤领域具有广泛的应用前景。
中图分类号:
王静雯, 吕雅文, 尚亚卓, 刘洪来. 大米淀粉膜的制备及其性能[J]. 应用化学, 2022, 39(11): 1693-1702.
Jing-Wen WANG, Ya-Wen LYU, Ya-Zhuo SHANG, Hong-Lai LIU. Preparation and Properties of Rice Starch Film[J]. Chinese Journal of Applied Chemistry, 2022, 39(11): 1693-1702.
图2 淀粉颗粒的普通显微镜图(A)和偏光显微镜图(B)(红色圈内为马耳他十字结构)
Fig.2 Ordinary microscope (A) and polarizing microscope (B) of starch granules (the Maltese cross of starch granulesare circled by the red line)
组别 Group | C1 | C2 | C3 | C4 | C5 | C6 |
---|---|---|---|---|---|---|
柠檬酸质量分数 w(citric acid)/% | 0.00 | 0.30 | 0.40 | 0.50 | 0.60 | 0.70 |
淀粉溶液pH pH of starch solution | 12.01±0.02 | 10.97±0.02 | 10.30±0.07 | 6.81±0.02 | 5.85±0.01 | 5.45±0.02 |
表1 柠檬酸质量分数不同制备的淀粉溶液的pH值
Table 1 pH of starch solution prepared with different mass fraction of citric acid
组别 Group | C1 | C2 | C3 | C4 | C5 | C6 |
---|---|---|---|---|---|---|
柠檬酸质量分数 w(citric acid)/% | 0.00 | 0.30 | 0.40 | 0.50 | 0.60 | 0.70 |
淀粉溶液pH pH of starch solution | 12.01±0.02 | 10.97±0.02 | 10.30±0.07 | 6.81±0.02 | 5.85±0.01 | 5.45±0.02 |
图4 柠檬酸质量分数不同制备的淀粉溶液的粘度与剪切速率关系图w(柠檬酸)/%: C1. 0.0; C2. 0.3; C3. 0.4; C4. 0.5; C5. 0.6; C6. 0.7
Fig.4 Relationship between viscosity and shear rate of starch solution with different mass fraction of citric acidw(citric acid)/%: C1. 0.0; C2. 0.3; C3. 0.4; C4. 0.5; C5. 0.6; C6. 0.7
图5 不同质量分数淀粉制备的淀粉膜样品w(淀粉)/%: S1. 8; S2. 9; S3. 10; S4. 11; S5. 12
Fig.5 Starch film samples prepared with different mass fractions of starchw(starch)/%: S1. 8; S2. 9; S3. 10; S4. 11; S5. 12
组别 Group | S1 | S2 | S3 | S4 | S5 |
---|---|---|---|---|---|
淀粉质量分数 w(starch)/% | 8.00 | 9.00 | 10.00 | 11.00 | 12.00 |
膜厚度 Film thickness/mm | 0.34±0.03 | 0.33±0.01 | 0.34±0.01 | 0.33±0.04 | 0.34±0.03 |
断裂伸长率 Elongation at break/% | 138.31±2.44 | 135.40±3.13 | 85.58±2.01 | 83.59±1.96 | 70.28±2.59 |
拉伸强度 Tensile strength/MPa | 0.25±0.04 | 0.34±0.04 | 0.55±0.04 | 0.61±0.02 | 0.94±0.02 |
表2 不同质量分数淀粉制备的淀粉膜断裂伸长率和拉伸强度
Table 2 Elongation at break and tensile strength of starch film with different mass fractions of starch
组别 Group | S1 | S2 | S3 | S4 | S5 |
---|---|---|---|---|---|
淀粉质量分数 w(starch)/% | 8.00 | 9.00 | 10.00 | 11.00 | 12.00 |
膜厚度 Film thickness/mm | 0.34±0.03 | 0.33±0.01 | 0.34±0.01 | 0.33±0.04 | 0.34±0.03 |
断裂伸长率 Elongation at break/% | 138.31±2.44 | 135.40±3.13 | 85.58±2.01 | 83.59±1.96 | 70.28±2.59 |
拉伸强度 Tensile strength/MPa | 0.25±0.04 | 0.34±0.04 | 0.55±0.04 | 0.61±0.02 | 0.94±0.02 |
图6 甘油质量分数不同制备的淀粉膜样品w(甘油)/%: G1. 3; G2. 4; G3. 5; G4. 6; G5. 7
Fig.6 Starch film samples prepared with different mass fractions of glycerolw(glycerol)/%: G1. 3; G2. 4; G3. 5; G4. 6; G5. 7
组别 Group | G1 | G2 | G3 | G4 | G5 |
---|---|---|---|---|---|
甘油质量分数 w(Glycerol)/% | 3.00 | 4.00 | 5.00 | 6.00 | 7.00 |
膜厚度 Film thickness/mm | 0.44±0.06 | 0.44±0.05 | 0.46±0.02 | 0.46±0.03 | 0.44±0.04 |
断裂伸长率 Elongation at break/% | 83.59±0.93 | 95.84±2.44 | 97.27±1.76 | 100.95±1.23 | 108.34±2.22 |
拉伸强度 Tensile strength/MPa | 1.29±0.05 | 1.10±0.02 | 0.61±0.04 | 0.40±0.07 | 0.24±0.05 |
表3 甘油质量分数不同制备的淀粉膜断裂伸长率和拉伸强度
Table 3 Elongation at break and tensile strength of starch films with different mass fractions of glycerol concentrations
组别 Group | G1 | G2 | G3 | G4 | G5 |
---|---|---|---|---|---|
甘油质量分数 w(Glycerol)/% | 3.00 | 4.00 | 5.00 | 6.00 | 7.00 |
膜厚度 Film thickness/mm | 0.44±0.06 | 0.44±0.05 | 0.46±0.02 | 0.46±0.03 | 0.44±0.04 |
断裂伸长率 Elongation at break/% | 83.59±0.93 | 95.84±2.44 | 97.27±1.76 | 100.95±1.23 | 108.34±2.22 |
拉伸强度 Tensile strength/MPa | 1.29±0.05 | 1.10±0.02 | 0.61±0.04 | 0.40±0.07 | 0.24±0.05 |
组别 Group | 甘油质量分数w(glycerol)/% | 透光率 Transmittance/% | ||||
---|---|---|---|---|---|---|
λ=400 nm | λ=500 nm | λ=600 nm | λ=700 nm | λ=800 nm | ||
G1 | 3 | 9.07±0.84 | 25.03±0.37 | 37.42±0.97 | 46.57±1.52 | 53.35±1.11 |
G2 | 4 | 4.36±0.61 | 14.49±0.92 | 23.72±0.55 | 31.77±0.46 | 39.09±0.76 |
G3 | 5 | 2.83±0.42 | 9.27±0.97 | 15.97±1.23 | 22.73±1.51 | 27.44±1.33 |
G4 | 6 | 2.45±0.31 | 7.90±0.85 | 14.53±0.57 | 20.76±0.88 | 26.89±0.57 |
G5 | 7 | 3.11±0.27 | 9.72±0.93 | 17.23±0.84 | 25.03±0.50 | 32.07±1.04 |
表4 甘油质量分数不同制备的淀粉膜在不同波长下的透光率
Table 4 Transmittance of starch films with different glycerol mass fraction of at different wavelengths
组别 Group | 甘油质量分数w(glycerol)/% | 透光率 Transmittance/% | ||||
---|---|---|---|---|---|---|
λ=400 nm | λ=500 nm | λ=600 nm | λ=700 nm | λ=800 nm | ||
G1 | 3 | 9.07±0.84 | 25.03±0.37 | 37.42±0.97 | 46.57±1.52 | 53.35±1.11 |
G2 | 4 | 4.36±0.61 | 14.49±0.92 | 23.72±0.55 | 31.77±0.46 | 39.09±0.76 |
G3 | 5 | 2.83±0.42 | 9.27±0.97 | 15.97±1.23 | 22.73±1.51 | 27.44±1.33 |
G4 | 6 | 2.45±0.31 | 7.90±0.85 | 14.53±0.57 | 20.76±0.88 | 26.89±0.57 |
G5 | 7 | 3.11±0.27 | 9.72±0.93 | 17.23±0.84 | 25.03±0.50 | 32.07±1.04 |
图7 添加甘草酸二钾的淀粉膜样品的性质(A)、(B)样品实物图; (C) 不同质量分数甘草酸二钾溶液的紫外吸收图(质量浓度分别为0.001、0.005、0.010、0.050和0.100 mg/mL)及拟合所得标准曲线图; (D) 样品中甘草酸二钾的释放随时间变化的曲线
Fig.7 Study on properties of starch film sample S6 added with dipotassium glycyrrhizinate(A), (B) Physical drawing of sample picture; (C) UV absorption diagram of dipotassium glycyrrhizinate solution with different mass fraction (The mass concentration: 0.001, 0.005, 0.010, 0.050 and 0.100 mg/mL) and standard curve obtained by fitting; (D) Curve of release of dipotassium glycyrrhizinate in sample with time
1 | 兰俊杰. 高直链淀粉基可降解膜的研究[D]. 哈尔滨: 哈尔滨工业大学, 2007. |
LAN J J. The research of high amylose based degradable film[D]. Harbin: Harbin Institute of Technology, 2007. | |
2 | SELIGRA P G, MEDINA J C, FAMA L, et al. Biodegradable and non-retrogradable eco-films based on starch-glycerol with citric acid as crosslinking agent[J]. Carbohydr Polym, 2016, 138: 66-74 |
3 | HAN W F, XIONG S B, LI J T, et al. Crystal properties and gelatinization properties of glutinous rice starch[J]. J Chin Cereals Oils Assoc, 2015, 30(8): 48-53. |
4 | VERENA J, KARIN K, MARKUS S, et al. Influence of plasticiser on the barrier, mechanical and grease resistance properties of alginate cast films[J]. Carbohydr Polym, 2014, 110: 309-319. |
5 | PANKAJ J. Effect of plasticizer and antimicrobial agents on functional properties of bionanocomposite films based on corn starch-chitosan for food packaging applications[J]. Int J Biol Macromol, 2020, 160: 571-582. |
6 | CAROLIN M, ERIK O, TOMAS S, et al. Molecular structure of citric acid cross-linked starch films[J]. Carbohydr Polym, 2013, 96(1): 270-276. |
7 | ZHANG X X, HUANG L J, CHEN J, et al. Research progress of starch-based food packaging film[J]. Packag Eng, 2018, 39(3): 83-88. |
8 | 贾雪. 玉米淀粉基薄膜材料的制备及性质研究[D]. 无锡: 江南大学, 2018. |
JIA X. Preparation and properties of maize starch-based film materials[D]. Wuxi: Jiangnan University, 2018. | |
9 | IM K O, IN Y B, HYEON G L. Effect of dry heat treatment on physical property and in vitro starch digestibility of high amylose rice starch[J]. Int J Biol Macromol, 2018, 108: 568-575. |
10 | XU C, LI G, CHEN P, et al. Investigation of the high-amylose maize starch gelatinization behaviours in glycerol-water systems[J]. J Cereal Sci, 2017, 77: 135-140. |
11 | KE L, YACHENG H, YUN C, et al. Effects of dry heat treatment on the structure and physicochemical properties of waxy potato starch[J]. Int J Biol Macromol, 2019, 132: 1044-1050. |
12 | 李贵萧, 牛凯, 侯汉学, 等. 高压均质对玉米淀粉机械力化学效应研究[J]. 中国粮油学报, 2017, 32(9): 62-68. |
LI G X, NIU K, HOU H X, et al. Mechanochemical effects of high pressure homogenization on corn starch[J]. J Chin Cereals Oils Assoc, 2017, 32(9): 62-68. | |
13 | CHEN L L, DAI Y Y, HOU H X, et al. Effect of high pressure microfluidization on the morphology, structure and rheology of sweet potato starch[J]. Food Hydrocolloids, 2021, 115(2): 106606. |
14 | KOO H J, PARK S H, JO J S, et al. Gelatinization and retrogradation of 6-year-old korean ginseng starches studied by DSC[J]. LWT-Food Sci Technol, 2004, 38(1): 59-65. |
15 | MARKUS S, MARIO J, THOMAS B. Starch gelatinization and its complexity for analysis[J]. Stärke, 2015, 67(1/2): 30-41. |
16 | FUKUOKA M, OHTA K I, WATANABE H. Determination of the terminal extent of starch gelatinization in a limited water system by DSC[J]. J Food Eng, 2002, 53(1): 39-42. |
17 | 姜培彦, 马晓军. 脂质与淀粉相互作用及其对淀粉性质影响[J]. 粮食与油脂, 2007(11): 7-9. |
JIANG P Y, MA X J. Interaction of lipid with starch and their effect on starch properties of starch[J]. Grain Oil Sci Technol, 2007(11): 7-9. | |
18 | CAI C H, ZHAO L X, HUANG J, et al. Morphology, structure and gelatinization properties of heterogeneous starch granules from high-amylose maize[J]. Carbohydr Polym, 2014, 102: 606-614. |
19 | 王文涛, 卢晓明, 张慧, 等. 柠檬酸对挤压吹塑淀粉/聚乙烯醇复合膜性能的影响[J]. 中国粮油学报, 2017, 32(12): 44-49. |
WANG W T, LU X M, ZHANG H, et al. Effect of citric acid on properties of extrusion blown starch/polyvinyl alcohol composite membrane[J]. J Chin Cereals Oils Assoc, 2017, 32(12): 44-49. | |
20 | 唐皞, 郭斌, 薛岚, 等. 增塑剂在热塑性淀粉中的应用研究进展[J]. 塑料工业, 2012, 40(7): 1-4. |
TANG H, GUO B, XUE L, et al. Research progress of application of the plasticizers in thermoplastic starch[J]. Plast Ind, 2012, 40(7): 1-4. | |
21 | OLSSON E, MENZEL C, JOHANSSON C, et al. The effect of pH on hydrolysis, cross-linking and barrier properties of starch barriers containing citric acid[J]. Carbohydr Polym, 2013, 98(2): 1505-1513. |
22 | 钱建亚, 顾林. 三种常用淀粉糊化测定方法的比较[J]. 西部粮油科技, 1999(4): 3-5. |
QIAN J Y, GU L. Comparison of three common starch gelatinization determination methods[J]. West Grain Oil Technol, 1999(4): 3-5. | |
23 | NORDIN N, OTHMAN S H, RASHID S A, et al. Effects of glycerol and thymol on physical, mechanical, and thermal properties of corn starch films[J]. Food Hydrocolloids, 2020, 106: 105884. |
24 | WOO S L, SEOK Y O, GEUM D P, et al. Heat-sealing property of cassava starch film plasticized with glycerol and sorbitol[J]. Food Packag Shelf Life, 2020, 26: 100556. |
25 | VIEIRA M G A, SILVA M A D, OLIVEIRA L, et al. Natural-based plasticizers and biopolymer films: a review[J]. Eur Polym J, 2011, 47(3): 254-263. |
26 | 刘鹏飞, 孙圣麟, 王文涛, 等. 增塑剂甘油对甘薯淀粉膜性能的影响研究[J]. 中国粮油学报, 2015, 30(10): 15-20. |
LIU P F, SUN S L, WANG W T, et al. Effect of plasticizer glycerol on properties of sweet potato starch film[J]. J Chin Cereals Oils Assoc, 2015, 30(10): 15-20. | |
27 | 谌小立, 赵国华. 影响可食性淀粉膜性能的因素研究[J]. 食品与发酵工业, 2008(2): 100-103. |
SHEN X L, ZHAO G H. Study on the factors affecting the properties of edible starch film[J]. Food Ferment Ind, 2008(2): 100-103. | |
28 | LV T B, WU D J, SONG N, et al. Dipotassium glycyrrhizinate relieves leptospira-induced nephritis in vitro and in vivo[J]. Microb Pathog, 2021, 152(12): 104770. |
29 | 乔武, 贾霆涵, 陆静, 等. 汤原温泉水联合甘草酸二钾抗炎舒敏功效的研究[J]. 日用化学工业, 2021, 51(5): 433-442. |
QIAO W, JIA T H, LU J, et al. Study of anti-inflammatory and anti-allergy effects of Yubarahotspring water combined with dipotassium glycyrrhizinate[J]. China Surfactant Deterg Cosmet, 2021, 51(5): 433-442. |
[1] | 杨洋, 陈奇, 李治鹏, 谷卓然, 叶世贵, 佘雪. 用于压裂液改性的耐高温锆硼交联剂的制备及评价[J]. 应用化学, 2021, 38(4): 431-438. |
[2] | 周梦, 舒鹏, 冯蓓, 尚亚卓, 刘洪来, 李成亮. 卵磷脂类液晶乳液的性能[J]. 应用化学, 2018, 35(10): 1227-1233. |
[3] | 王琴梅, 张亦霞, 李卓萍, 许嘉琪, 叶惠兰, 纪小莉, 滕伟. 多醛基海藻酸钠交联剂的制备及性能[J]. 应用化学, 2010, 27(02): 155-158. |
[4] | 周红英,王建华,隋鹏,孙印石,房信胜. 半夏淀粉的理化特性[J]. 应用化学, 2010, 27(01): 117-121. |
[5] | 陈艳, 沈鹤柏, 徐瑞云, 朱龙章. 壳聚糖/5-氟尿嘧啶纳米粒子的制备及其性能[J]. 应用化学, 2008, 25(5): 564-568. |
[6] | 何晓智, 张宝砚, 田梅, 牛海喃. 侧链型含异山梨醇基的手性液晶弹性体的合成与性能[J]. 应用化学, 2008, 25(10): 1156-1160. |
[7] | 宋志刚, 王建华, 王汉忠, 赵爱红, 刘春晓, 田纪春. 粉葛淀粉的理化特性[J]. 应用化学, 2006, 23(9): 974-977. |
[8] | 娄帅, 刘晓霞, 李文斌, 张普玉. 离子液体对PMMA绿色增塑性能[J]. 应用化学, 2006, 23(8): 930-932. |
[9] | 杨媛, 李立华, 罗丙红, 周长忍. 新型环氧生物降解交联剂的制备及交联壳聚糖膜的性能[J]. 应用化学, 2006, 23(4): 414-418. |
[10] | 张庆思, 朱晓丽, 李俊英, 李鹏, 张江华, 李宝海, 高彦慧. 聚氨酯水分散体交联剂的合成及结构表征[J]. 应用化学, 2004, 21(11): 1123-1126. |
[11] | 唐致远, 王占良, 薛建军, 刘春燕. 增塑剂对聚合物电解质锂离子电池性能的影响[J]. 应用化学, 2002, 19(6): 560-563. |
[12] | 王正辉, 刘天穗, 张殷全, 刘汝锋. 低温固化交联剂的制备[J]. 应用化学, 2000, 17(2): 222-223. |
[13] | 阎红, 管晓培. 1,9-二叠氮基-2,2,8,8-四硝基-4,6-二氧杂壬烷的合成及性能[J]. 应用化学, 1997, 0(4): 96-98. |
[14] | 肖超渤, 张曦, 张俐娜. 甘油单醚类化合物对纤维素膜的增塑作用[J]. 应用化学, 1997, 0(2): 13-15. |
[15] | 汪传清, 黄玉惠, 赵树录, 丛广民. 聚苯醚磺酸锂与酯类增塑剂共混物的导电性[J]. 应用化学, 1996, 0(2): 82-84. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||