[1] |
XIAO W, WANG R S, HANDY D E, et al. NAD (H) and NADP (H) redox couples and cellular energy metabolism[J]. Antioxid Redox Signal, 2018, 28(3):251-272.
|
[2] |
STEIN L R, IMAI S. The dynamic regulation of NAD metabolism in mitochondria[J]. Trends Endocrinol Metab, 2012, 23(9):420-428.
|
[3] |
TITOV D V, CRACAN V, GOODMAN R P, et al. Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio[J]. Science, 2016, 352(6282):231-235.
|
[4] |
SOMOGYIA, HORVAIG, CSALAM, et al. Analytical approaches for thequantitation of redox-active pyridinedinucleotides in biological matrices[J]. Period Polytech-Chem, 2016, 60(4):218-230.
|
[5] |
ZHANG J, TEN PIERICK A, VAN ROSSUM H M, et al. Determination of the cytosolic NADPH/NADP ratio in saccharomyces cerevisiae using shikimate dehydrogenase as sensor reaction[J]. Sci Rep, 2015, 5:12846.
|
[6] |
ZHU C T, RAND D M. A hydrazine coupled cycling assay validates the decrease in redox ratio under starvation in Drosophila [J]. PLoS One, 2012, 7(10):e47584.
|
[7] |
P?LFI M, HAL?SZ A S, T?BI T, et al. Application of the measurement of oxidized pyridine dinucleotides with high-performance liquid chromatography-fluorescence detection to assay the uncoupled oxidation of NADPH by neuronal nitric oxide synthase[J]. Anal Biochem, 2004, 326(1):69-77.
|
[8] |
QIAN Y, BANERJEE S, GROSSMAN C E, et al. Transaldolase deficiency influences the pentose phosphate pathway, mitochondrial homoeostasis and apoptosis signal processing[J]. Biochem J, 2008, 415(1):123-134.
|
[9] |
LUO B, GROENKE K, TAKORS R, et al. Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography-mass spectrometry[J]. J Chromatogr A, 2007, 1147(2):153-164.
|
[10] |
CORDELL R L, HILL S J, ORTORI C A, et al. Quantitative profiling of nucleotides and related phosphate-containing metabolites in cultured mammalian cells by liquid chromatography tandem electrospray mass spectrometry[J]. J Chromatogr B Anal Technol Biomed Life Sci, 2008, 871(1):115-124.
|
[11] |
姜丹丹, 李伟, 周怀彬, 等. 超高效液相色谱-质谱法测定细胞中嘌呤核苷酸的方法探究[J]. 分析测试学报, 2013, 32(10):1202-1206.
|
|
JIANG D D, LI W, ZHOU H B, et al. Study on determination of purine nucleotides by ultra performance liquid chromatography-mass spectrometry[J]. J Instrum Anal, 2013, 32(10):1202-1206.
|
[12] |
MICHOPOULOS F, WHALLEY N, THEODORIDIS G, et al. Targeted profiling of polar intracellular metabolites using ion-pair-high performance liquid chromatography and-ultra high performance liquid chromatography coupled to tandem mass spectrometry: applications to serum, urine and tissue extracts[J]. J Chromatogr A, 2014, 1349:60-68.
|
[13] |
WU J T, WU L H, KNIGHT J A. Stability of NADPH: effect of various factors on the kinetics of degradation[J]. Clin Chem, 1986, 32(2):314-319.
|
[14] |
PITT J J. Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry[J]. Clin Biochem Rev, 2009, 30(1):19-34.
|
[15] |
CLARK D P. The fermentation pathways of Escherichia coli [J]. FEMS Microbiol Rev, 1989, 5(3):223-234.
|
[16] |
HAN K, LIM H C, HONG J. Acetic acid formation in Escherichia coli fermentation[J]. Biotechnol Bioeng, 1992, 39(6):663-671.
|