应用化学 ›› 2022, Vol. 39 ›› Issue (1): 110-130.DOI: 10.19894/j.issn.1000-0518.210485
收稿日期:
2021-09-30
接受日期:
2021-11-10
出版日期:
2022-01-01
发布日期:
2022-01-10
通讯作者:
郑咏梅
基金资助:
GAO Chun-Lei1,2,ZHENG Yong-Mei1()
Received:
2021-09-30
Accepted:
2021-11-10
Published:
2022-01-01
Online:
2022-01-10
Contact:
Yong-Mei ZHENG
About author:
zhengym@buaa.edu.cnSupported by:
摘要:
对液滴在界面上动态行为的研究是化学和材料领域的一个重要方向,许多先进的表面和界面技术,比如集水、防覆冰、防雾、微流体控制和传热等,均属于这一范畴。通过模仿自然界中具有特殊微纳米结构和特定化学组成的生物表面,设计并构筑相应具有特殊浸润性的仿生界面,对仿生界面材料的技术应用起到了良好的先导与示范作用。本文结合本课题组的研究工作,以自然界中具有特殊微纳米结构和梯度特征的生物表面为出发点,分别从仿生多微纳米梯度界面的雾滴传输聚集调控、低温憎水/防覆冰动态调控、微液滴驱动调控3个方面,综述了近年来仿生多微纳米梯度界面的液滴动态行为调控方面的代表性研究工作,并对该领域的研究现状做出了总结和展望。
中图分类号:
高春雷, 郑咏梅. 仿生多微纳米梯度界面的液滴动态行为调控[J]. 应用化学, 2022, 39(1): 110-130.
GAO Chun-Lei, ZHENG Yong-Mei . Control of Droplet Dynamic Behavior at Bioinspired Multi⁃micro/nano Gradient Interface[J]. Chinese Journal of Applied Chemistry, 2022, 39(1): 110-130.
图1 典型生物表面的集水特性A.沙漠甲虫及其鞘翅表面的微观结构[12]; B.湿重构蜘蛛丝的微观结构及其方向集水过程[8]; C.仙人掌的多结构、多功能综合雾气收集系统[14]; D.瓶子草毛状体的超快水收集和传输特性[15]
Fig.1 Water collection characteristics of typical biological surfacesA. The microstructure of the desert beetle[12]; B. The microstructure of the wet-rebuilt spider silk and its directional water collection process[8]; C. The multi-structure and multi-functional integrated fog collecting system of cacti[14]; D. In situ optical images of the Sarracenia trichome and its ultrafast water transport process[15]
图2 仿生梯度协同界面的悬滴特性调控A.制备条件对仿生梯度纤维结构的影响[16];B.仿生梯度纤维的悬滴能力机制[17];C.液滴在纺锤结构上的聚集悬挂机制[18];D.具有多梯度、多尺度纺锤结的仿生梯度纤维具有更强的悬滴能力[19]
Fig.2 Controlling the hanging drop characteristics of the bioinspired gradient collaborative interfaceA. The influence of preparation conditions on the structure of bioinspired fibers[16]; B. Droplet hanging mechanism of the bioinspired fiber[17]; C. The aggregation and hanging mechanism of droplets on the spindle structure[18]; D. The bioinspired fiber with multi-gradient and multi-scale spindle knots has a stronger ability of hanging droplets[19]
图3 仿生梯度协同的液滴方向性聚集特性调控A.斜角涂层技术获得单向长程梯度致使水凝结液滴单向合并传输[21];B.变速抽拉涂层技术获得了3种长程梯度模式:单向梯度、中心对称、两边对称[22];C.仿生梯度纤维上微小水滴的温控定向运动[23];D.仿生梯度纤维上微小水滴的光控定向运动[24];E.具有内部水传输通道的仿生梯度纤维[25]
Fig.3 Bioinspired gradient synergistic regulation of droplet directional aggregationA. The bevel coating technology obtains a unidirectional long range gradient resulting in unidirectional combined transport of condensation droplets[21]; B. Variable-speed drawing coating technology obtains three long-range gradient modes: unidirectional gradient, center symmetry, and bilateral symmetry[22]; C. The temperature-controlled directional water collection on the bioinspired fiber[23]; D. The light-controlled directional water collection on the bioinspired fiber[24]; E. Bioinspired nanofibrils-humped fibers with strong capillary for fog capture[25]
图4 仿生梯度纤维的连续制备技术A.流体涂层技术获得的仿生梯度纤维[26];B.静电纺丝技术获得的仿生梯度纤维[27];C.利用湿自组装技术获得的仿生梯度纤维[28-30];D.利用微流体技术获得的仿生梯度纤维[31]
Fig.4 Continuous preparation technologies of bioinspired fibersA. Bioinspired fibers obtained by fluid coating technology[26]; B. Bioinspired fibers obtained by electrostatic spinning[27];C. Bioinspired fibers obtained by wet self-assembly technology[28-30]; D Bioinspired fibers obtained using microfluidics[31]
图5 仿生梯度锥针结构的液滴高效传输聚集调控A.水滴在非均匀粗糙锥形导线上的单向传输[32];B.通过整合Janus膜和具有微/纳米结构的圆锥棘实现雾气高效收集[33]
Fig.5 Efficient droplet transport and aggregation regulation based on bioinspired gradient cone needle structureA. Water unidirectional transport on heterogeneous rough conical wires [32]; B. Excellent fog-droplets collector via integrative janus membrane and conical spine with micro/nanostructures[33]
图6 二维仿生集水材料A.具有星形浸润性图案的综合仿生表面的高效水收集特性[34];B.亲水定向润滑表面相较于超疏水表面和SLIPS表面表现出更强的集水性能[36];C.具有密集仿生刺结构的集水网面的集水过程[38]
Fig.6 Two-dimensional bioinspired water harvesting materialA. Efficient water collection on integrative bioinspired surfaces with star-shaped wettability patterns [34]; B. Hydrophilic directional slippery rough surfaces showed stronger water harvesting performance than superhydrophobic surface and SLIPS surface[36];C. Water harvesting process of catchment net with dense bioinspired spines[38]
图7 三维仿生集水材料A.光滑的非对称凸起表面液滴的凝结[39];B.仿生纳米锥修饰的三维纤维网络的集雾特性[40];C.具有纳米纹理的液体注入式三维框架[41];D.弹性微交错多孔超亲水框架的集雾特性[42];E.具有全天淡水收集能力的微结构水凝胶[43]
Fig.7 Three-dimensional bioinspired water harvesting materialA. Condensation on slippery asymmetric bumps[39]; B. Fog harvesting of a bioinspired nanocone-decorated 3D fiber network[40]; C. Liquid-infused three-dimensional frame with nano-texture[41]; D. Elastic microstaggered porous superhydrophilic framework as a robust fog harvester[42]; E. A micro-structured hydrogel with the ability to collect fresh water throughout the day[43]
图8 典型生物表面的憎水性A.大闪蝶利用翅脉减少液滴的接触时间[44];B.微液滴在荷叶上的动态悬浮行为[7];C.真菌的掷孢子现象[45, 46];D.水黾腿上的冷凝液滴的自去除[11]
Fig.8 Hydrophobicity of typical biological surfacesA. Morpho butterfly reduces droplet contact time by using the vein on the wing[44]; B. Dynamic suspension behavior of microdroplet on lotus leaves[7]; C. Surface tension propulsion of fungal spores[45, 46]; D. Self-removal of condensation droplets on water strider legs[11]
图9 微纳米结构表面的低温憎水性A.具有微纳米复合结构表面的防雾性能[48];B.超疏水表面凝结液滴的弹跳行为[50];C.水在纳米柱和纳米锥上的冷凝[51]
Fig.9 The low-temperature hydrophobicity of the surface with micro/nano structureA. Antifogging properties of composite micro- and nanostructured surfaces[48]; B. The bouncing behavior of the condensation droplets on the super-hydrophobic surface[50]; C. Condensation of water from a supersaturated atmosphere on nanoscale cones and pillars[51]
图10 微纳米结构表面的防覆冰特性A.微/纳米结构表面的防覆冰特性[54]; B.液滴在超疏水表面的饼状弹跳[57]; C.柔性超疏水表面的低温憎水和力学特性[58]
Fig.10 Icephobic properties on the surface of micro-nano structuresA. Icephobic/anti-icing properties of micro/nanostructured surfaces[54]; B. Pancake bouncing on superhydrophobic surfaces[57];C. Low temperature hydrophobic and mechanical properties of flexible superhydrophobic surfaces[58]
图11 超疏水涂层材料A.具有多尺度复合形貌的坚固超疏水涂层[60];B.具有机械化学鲁棒性和抗液体冲击性的全有机超疏水涂层[61];C.坚固的超疏水表面设计[62]
Fig.11 Superhydrophobic coating materialsA. Multilevel nanoparticles coatings with excellent liquid repellency[60]; B. All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance[61]; C. Design of robust superhydrophobic surfaces[62]
图12 典型生物表面的液体传输特性A.液滴在水鸟喙中的传输[63];B.超疏水蝴蝶翅膀的液滴定向粘附特性[64];C.振动的蝴蝶翅膀表面上雾滴的定向传输[65];D.猪笼草口缘区液膜的单方向连续搬运[66];E.水和乙醇在南洋杉叶片上的定向传输[68]
Fig.12 Liquid transport characteristics of typical biological surfacesA. Surface tension transport of prey by feeding shorebirds[63]; B. Directional adhesion of superhydrophobic butterfly wings[64];C. The directional transmission of droplets on a vibrating butterfly wing[65]; D. Continuous directional water transport on the peristome surface of Nepenthes alata[66]; E Directional transmission of water and ethanol on Araucaria leaves[68]
图13 仿生各向异性结构表面微液滴传输A.在仿黑麦草叶锥形齿轮阵列表面上液滴的定向运动[69];B.高温不对称硅纳米线表面上的液滴快速驱动[70];C.形状记忆聚合物制备的倾斜微柱阵列表面的液滴定向铺展[71];D.仿猪笼草口缘表面的液体单向铺展控制[72];E. 细胞流体装置中的螺旋三维流体传输路径[74]
Fig.13 Transfer of micro-droplets on the surface of the bioinspired anisotropic structureA. Directional shedding-off of water on bio-mimetic taper-ratchet array surfaces[69]; B. Directional drop transport achieved on high-temperature anisotropic wetting surfaces[70]; C. Directional droplet spreading transport controlled on tilt-angle pillar arrays[71]; D. Uni-directional liquid spreading control on a bioinspired surface from the peristome of Nepenthes alata[72]; E. Spiral 3D liquid path in a cellular fluidic device[74]
图14 浸润性梯度界面微液滴的传输A.高粘附表面上液滴的可控定向铺展[76];B.静电纺纤维表面上的液滴各向异性/单向铺展[77]
Fig.14 Transport of microdroplet at wettability gradient interfaceA. Controlled directional water-droplet spreading on a high-adhesion surface[76]; B. Anisotropic/unidirectional spreading of droplets on a fibrous surface[77]
图15 响应性仿生界面的微液滴操控A 纳米/微米阵列的磁响应方向性微液滴传输[80];B 液晶聚合物微致动器中液柱的光控运动[84];C 光热油凝胶表面微液滴的操控[85];D 表面电荷打印用于程序化液滴传输[87]
Fig.15 Responsive bioinspired interface for droplet manipulationA. Magnetically induced low adhesive direction of nano/micropillar arrays for microdroplet transport[80]; B. Photocontrol of fluid slugs in liquid crystal polymer microactuators[84]; C. Droplets manipulated on photothermal organogel surfaces[85]; D. Surface charge printing for programmed droplet transport[87]
1 | LIU M, WANG S, JIANG L. Nature-inspired superwettability systems[J]. Nat Rev Mater, 2017, 2(7): 17036. |
2 | YAN X, JIN Y, CHEN X, et al. Nature-inspired surface topography: design and function[J]. Sci China Phys Mech, 2020, 63(2): 224601. |
3 | KREDER M J, ALVARENGA J, KIM P, et al. Design of anti-icing surfaces: smooth, textured or slippery?[J]. Nat Rev Mater, 2016, 1(1):15003. |
4 | BALL P. Drinking up mist[J]. Nat Mater, 2019, 18(4): 306. |
5 | WANG Y, MA K, XIN J. Stimuli-responsive bioinspired materials for controllable liquid manipulation: principles, fabrication, and applications[J]. Adv Funct Mater, 2018, 28(6): 1705128. |
6 | FENG L, LI S, LI Y, et al. Super-hydrophobic surfaces: from natural to artificial[J]. Adv Mater, 2002, 14(24): 1857-1860. |
7 | ZHENG Y, HAN D, ZHAI J, et al. In situ investigation on dynamic suspending of microdroplet on lotus leaf and gradient of wettable micro- and nanostructure from water condensation[J]. Appl Phys Lett, 2008, 92(8): 084106. |
8 | ZHENG Y, BAI H, HUANG Z, et al. Directional water collection on wetted spider silk[J]. Nature, 2010, 463(7281): 640-643. |
9 | SHI R, TIAN Y, WANG L. Bioinspired fibers with controlled wettability[J]. ACS Nano, 2021, 15(5): 7907-7930. |
10 | GAO X, JIANG L. Water-repellent legs of water striders[J]. Nature, 2004. 432(7013): 36. |
11 | WANG Q, YAO X, LIU H, et al. Self-removal of condensed water on the legs of water striders [J]. Proc Natl Acad Sci USA, 2015, 112(30): 9247-9252. |
12 | PARKER A R, LAWRENCE C R. Water capture by a desert beetle[J]. Nature, 2001, 414(6859): 33-34. |
13 | BAI H, TIAN X, ZHENG Y, et al. Direction controlled driving of tiny water drops on bioinspired artificial spider silks[J]. Adv Mater, 2010, 22(48): 5521-5525. |
14 | JU J, ZHENG Y, JIANG L. Bioinspired one-dimensional materials for directional liquid transport[J]. Acc Chem Res, 2014, 47(8): 2342-2352. |
15 | CHEN H, RAN T, GAN Y, et al. Ultrafast water harvesting and transport in hierarchical microchannels[J]. Nat Mater, 2018, 17(10): 935-943. |
16 | BAI H, JU J, SUN R Z, et al. Controlled fabrication and water collection ability of bioinspired artificial spider silks[J]. Adv Mater, 2011, 23(32): 3708-3711. |
17 | TIAN X, CHEN Y, ZHENG Y, et al. Controlling water capture of bioinspired fibers with hump structures[J]. Adv Mater, 2011, 23(46): 5486-5491. |
18 | HOU Y, CHEN Y, XUE Y, et al. Water collection behavior and hanging ability of bioinspired fiber[J]. Langmuir, 2012, 28(10): 4737-4743. |
19 | HOU Y, CHEN Y, XUE Y, et al. Stronger water hanging ability and higher water collection efficiency of bioinspired fiber with multi-gradient and multi-scale spindle knots[J]. Soft Matter, 2012, 8(44): 11236-11239. |
20 | WANG S, FENG S, HOU Y, et al. Controlling of water collection ability by an elasticity-regulated bioinspired fiber[J]. Macromol Rapid Commun, 2015, 36(5): 459-464. |
21 | CHEN Y, WANG L, XUE Y, et al. Bioinspired tilt-angle fabricated structure gradient fibers: micro-drops fast transport in a long-distance[J]. Sci Rep, 2013, 3: 2927 |
22 | XUE Y, CHEN Y, WANG T, et al. Directional size-triggered microdroplet target transport on gradient-step fibers[J]. J Mater Chem A, 2014, 2(20): 7156-7160. |
23 | HOU Y, GAO L, FENG S, et al. Temperature-triggered directional motion of tiny water droplets on bioinspired fibers in humidity[J]. Chem Commun, 2013, 49(46): 5253-5255. |
24 | FENG S, HOU Y, XUE Y, et al. Photo-controlled water gathering on bioinspired fibers[J]. Soft Matter, 2013, 9(39): 9294-9297. |
25 | LIU Y, YANG N, GAO C, et al. Bioinspired nanofibril-humped fibers with strong capillary channels for fog capture[J]. ACS Appl Mater Interfaces, 2020, 12(25): 28876-2884. |
26 | BAI H, SUN R, JU J, et al. Large-scale fabrication of bioinspired fibers for directional water collection[J]. Small, 2011, 7(24): 3429-3433. |
27 | TIAN X, BAI H, ZHENG Y, et al. Bioinspired heterostructured bead-on-string fibers that respond to environmental wetting[J]. Adv Funct Mater, 2011, 21(8): 1398-1402. |
28 | SONG C, ZHAO L, ZHOU W, et al. Bioinspired wet-assembly fibers: from nanofragments to microhumps on string in mist[J]. J Mater Chem A, 2014, 2(25):9465-9468. |
29 | SONG C, DU R F, ZHENG Y. Wet-induced fabrication of heterogeneous hump-on-string fibers[J]. Materials, 2015, 8(7): 4249-4257. |
30 | ZHAO L, SONG C, ZHANG M, et al. Bioinspired heterostructured bead-on-string fibers via controlling the wet-assembly of nanoparticles[J]. Chem Commun, 2014, 50(73): 10651-10654. |
31 | LIU Y, YANG N, LI X, et al. Water harvesting of bioinspired microfibers with rough spindle-knots from microfluidics[J]. Small, 2020, 16(9): 1901819 |
32 | XU T, LIN Y, ZHANG M, et al. High-efficiency fog collector: water unidirectional transport on heterogeneous rough conical wires[J]. ACS Nano, 2016, 10(12): 10681-10688. |
33 | ZHOU H, ZHANG M, LI C, et al. Excellent fog-droplets collector via integrative janus membrane and conical spine with micro/nanostructures[J]. Small, 2018, 14(27): 1801335. |
34 | BAI H, WANG L, JU J, et al. Efficient water collection on integrative bioinspired surfaces with star-shaped wettability patterns[J]. Adv Mater, 2014, 26(29): 5025-5030. |
35 | XING Y, SHANG W, WANG Q, et al. Integrative bioinspired surface with wettable patterns and gradient for enhancement of fog collection[J]. ACS Appl Mater Interfaces, 2019, 11(11): 10951-10958. |
36 | DAI X, SUN N, NIELSEN S O, et al. Hydrophilic directional slippery rough surfaces for water harvesting[J]. Sci Adv, 2018, 4(3): eaaq0919. |
37 | LI X, LIU Y, ZHOU H, et al. Fog collection on a bioinspired topological alloy net with micro-/nanostructures[J]. ACS Appl Mater Interfaces, 2020, 12(4): 5065-5072. |
38 | BAI H, ZHAO T, WANG X, et al. Cactus kirigami for efficient fog harvesting: simplifying a 3D cactus into 2D paper art[J]. J Mater Chem A, 2020, 8(27): 13452-13458. |
39 | PARK K C, KIM P, GRINTHAL A, et al. Condensation on slippery asymmetric bumps[J]. Nature, 2016,531(7592): 78-82. |
40 | LI C, LIU Y, GAO C, et al. Fog harvesting of a bioinspired nanocone-decorated 3D fiber network[J]. ACS Appl Mater Interfaces, 2019, 11(4): 4507-4513. |
41 | PEI W, LI J, GUO Z, et al. Excellent fog harvesting performance of liquid-infused nano-textured 3D frame[J]. Chem Eng J, 2021, 409: 128180. |
42 | LI J, GAO C, PEI W, et al. Elastic microstaggered porous superhydrophilic framework as a robust fogwater harvester[J]. ACS Appl Mater Interfaces, 2020, 12(42): 48049-48056. |
43 | SHI Y, ILIC O, ATWATER H A, et al. All-day fresh water harvesting by microstructured hydrogel membranes[J]. Nat Commun, 2021, 12(1): 2797. |
44 | BIRD J C, DHIMAN R, KWON H M, et al. Reducing the contact time of a bouncing drop[J]. Nature, 2014, 505(7483): 385-388. |
45 | NOBLIN X, YANG S, DUMAIS J. Surface tension propulsion of fungal spores[J]. J Exp Biol, 2009, 212(17): 2835-2843. |
46 | LI J, HOU Y, LIU Y, et al. Directional transport of high-temperature Janus droplets mediated by structural topography[J]. Nat Phys, 2016, 12(6): 606-612. |
47 | WONG T S, KANG S H, TANG S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477(7365): 443-447. |
48 | WEN M, WANG L, ZHANG M, et al. Antifogging and icing-delay properties of composite micro- and nanostructured surfaces[J]. ACS Appl Mater Interfaces, 2014, 6(6): 3963-3968. |
49 | WISDOM K M, WATSON J A, QU X, et al. Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate[J]. Proc Natl Acad Sci USA, 2013, 110(20): 7992-7997. |
50 | MULROE M D, SRIJANTO B R, AHMADI S F, et al. Tuning superhydrophobic nanostructures to enhance jumping-droplet condensation[J]. ACS Nano, 2017, 11(8): 8499-8510. |
51 | MOUTERDE T, LEHOUCQ G, XAVIER S, et al. Antifogging abilities of model nanotextures[J]. Nat Mater, 2017, 16(6): 658-663. |
52 | ZHANG M, WANG L, FENG S, et al. A strategy of antifogging: air-trapped hollow microsphere nanocomposites[J]. Chem Mater, 2017, 29(7): 2899-2905. |
53 | MISHCHENKO L, HATTON B, BAHADUR V, et al. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets[J]. ACS Nano, 2010, 4(12): 7699-7707. |
54 | GUO P, ZHENG Y, WEN M, et al. Icephobic/anti-icing properties of micro/nanostructured surfaces[J]. Adv Mater, 2012, 24(19): 2642-2648. |
55 | GUO P, WEN M, WANG L, et al. Strong anti-ice ability of nanohairs over micro-ratchet structures[J]. Nanoscale, 2014, 6(8): 3917-3920. |
56 | WANG L, WEN M, ZHANG M, et al. Ice-phobic gummed tape with nano-cones on microspheres[J]. J Mater Chem A, 2014, 2(10): 3312-3316. |
57 | LIU Y, MOEVIUS L, XU X, et al. Pancake bouncing on superhydrophobic surfaces[J]. Nat Phys, 2014, 10(7): 515-519. |
58 | WANG L, GONG Q, ZHAN S, et al. Robust anti-icing performance of a flexible superhydrophobic surface[J]. Adv Mater, 2016, 28(35): 7729-7735. |
59 | GUO Z, GAO C, LI J, et al. Antiicing properties of bioinspired liquid-infused double-layer surface with internal wetting transport ability[J]. Adv Mater Interfaces, 2019, 6(10): 1900244. |
60 | ZHOU L, YIN S, GUO Z, et al. Multilevel nanoparticles coatings with excellent liquid repellency[J]. Adv Mater Interfaces, 2018, 5(19): 1800405. |
61 | PENG C, CHEN Z, TIWARI M K. All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance[J]. Nat Mater, 2018, 17(4): 355-360. |
62 | WANG D, SUN Q, HOKKANEN M J, et al. Design of robust superhydrophobic surfaces[J]. Nature, 2020, 582(7810): 55-59. |
63 | PRAKASH M, QUERE D, BUSH J W M. Surface tension transport of prey by feeding shorebirds: the capillary ratchet[J]. Science, 2008, 320(5878): 931-934. |
64 | ZHENG Y, GAO X, JIANG L. Directional adhesion of superhydrophobic butterfly wings[J]. Soft Matter, 2007, 3(2): 178-182. |
65 | LIU C, JU J, ZHENG Y, et al. Asymmetric ratchet effect for directional transport of fog drops on static and dynamic butterfly wings[J]. ACS Nano, 2014, 8(2): 1321-1329. |
66 | CHEN H, ZHANG P, ZHANG L, et al. Continuous directional water transport on the peristome surface of Nepenthes alata[J]. Nature, 2016, 532(7597): 85-89. |
67 | ZHANG P, ZHANG L, CHEN H, et al. Surfaces inspired by the nepenthes peristome for unidirectional liquid transport[J]. Adv Mater, 2017, 29(45): 1702995. |
68 | FENG S, ZHU P, ZHENG H, et al. Three-dimensional capillary ratchet-induced liquid directional steering[J]. Science, 2021, 373(6561): 1344-1348. |
69 | GUO P, ZHENG Y, LIU C, et al. Directional shedding-off of water on natural/bio-mimetic taper-ratchet array surfaces[J]. Soft Matter, 2012, 8(6): 1770-1775. |
70 | LIU C, JU J, MA J, et al. Directional drop transport achieved on high-temperature anisotropic wetting surfaces[J]. Adv Mater, 2014, 26(35): 6086-6091. |
71 | LIN Y, HU Z, GAO C, et al. Directional droplet spreading transport controlled on tilt-angle pillar arrays[J]. Adv Mater Interfaces, 2018, 5(22): 1800962. |
72 | CHEN H, ZHANG L, ZHANG Y, et al. Uni-directional liquid spreading control on a bioinspired surface from the peristome of Nepenthes alata[J]. J Mater Chem A, 2017, 5(15): 6914-6920. |
73 | LI C, YU C, ZHOU S, et al. Liquid harvesting and transport on multiscaled curvatures[J]. Proc Natl Acad Sci USA, 2020, 117(38): 23436-23442. |
74 | DUDUKOVIC N A, FONG E J, GEMEDA H B, et al. Cellular fluidics[J]. Nature, 2021, 595(7865): 58-65. |
75 | CHAUDHURY M K, WHITESIDES G M. How to make water run uphill[J]. Science, 1992, 256(5063): 1539-1541. |
76 | FENG S, WANG S, GAO L C, et al. Controlled directional water-droplet spreading on a high-adhesion surface[J]. Angew Chem Int Ed, 2014, 53(24): 6163-6167. |
77 | ZHANG M, WANG L, HOU Y, et al. Controlled smart anisotropic unidirectional spreading of droplet on a fibrous surface[J]. Adv Mater, 2015, 27(34): 5057-5062. |
78 | DENG S, SHANG W, FENG S, et al. Controlled droplet transport to target on a high adhesion surface with multi-gradients[J]. Sci Rep, 2017, 7: 45687. |
79 | WANG L, ZHANG M, SHI W, et al. Dynamic magnetic responsive wall array with droplet shedding-off properties[J]. Sci Rep, 2015, 5: 11209. |
80 | LIN Y, HU Z, ZHANG M, et al. Magnetically induced low adhesive direction of nano/micropillar arrays for microdroplet transport[J]. Adv Funct Mater, 2018, 28(49): 1800163. |
81 | WANG L, GAO C, HOU Y, et al. Magnetic field-guided directional rebound of a droplet on a superhydrophobic flexible needle surface[J]. J Mater Chem A, 2016, 4(47):18289-18293. |
82 | BAIGL D. Photo-actuation of liquids for light-driven microfluidics: state of the art and perspectives[J]. Lab Chip, 2012, 12(19): 3637-3653. |
83 | ICHIMURA K, OH S K, NAKAGAWA M. Light-driven motion of liquids on a photoresponsive surface[J]. Science, 2000, 288(5471): 1624-1626. |
84 | LV J, LIU Y, WEI J, et al. Photocontrol of fluid slugs in liquid crystal polymer microactuators[J]. Nature, 2016, 537(7619): 179-184. |
85 | GAO C, WANG L, LIN Y, et al. Droplets manipulated on photothermal organogel surfaces[J]. Adv Funct Mater, 2018, 28(35): 1803072. |
86 | SUN L, BIAN F, WANG Y, et al. Bioinspired programmable wettability arrays for droplets manipulation[J]. Proc Natl Acad Sci USA, 2020, 117(9): 4527-4532. |
87 | SUN Q, WANG D, LI Y, et al. Surface charge printing for programmed droplet transport[J]. Nat Mater, 2019, 18(9): 936-941. |
88 | KIM H, YANG S, RAO S R, et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight[J]. Science, 2017, 356(6336): 430-432. |
89 | ZHAO F, GUO Y, ZHOU X, et al. Materials for solar-powered water evaporation[J]. Nat Rev Mater, 2020, 5(5):388-401. |
90 | ZHANG W, WANG D, SUN Z, et al. Robust superhydrophobicity: mechanisms and strategies[J]. Chem Soc Rev, 2021, 50(6): 4031-4061. |
[1] | 周慧, 郭志光. 高效集水仿生超浸润材料的研究进展[J]. 应用化学, 2022, 39(1): 154-176. |
[2] | 孙灵钰, 郭佳慧, 汪雨, 许冬雨, 赵远锦. 仿生器官芯片研究进展[J]. 应用化学, 2022, 39(1): 18-34. |
[3] | 张晋红, 石奎, 徐鹏, 李倩, 薛龙建. 仿生表面液固界面摩擦力的动态调控[J]. 应用化学, 2022, 39(1): 188-195. |
[4] | 刘志浩, 谭晓晴, 梁永鹏, 夏超, 孟建新, 李风煜. 仿生视觉色度识别的浓度快速测定[J]. 应用化学, 2022, 39(1): 196-204. |
[5] | 刘旭, 李杨可欣, 杜黎, 于健, 王佳程, 耿阳, 韩广, 孙宽, 李猛. 水凝胶的制备及仿生设计在能源领域应用的研究进展[J]. 应用化学, 2022, 39(1): 35-54. |
[6] | 李胜男, 付俊. 水凝胶仿生柔性电子学[J]. 应用化学, 2022, 39(1): 55-73. |
[7] | 李春, 于严淏. 仿生矿化的机理和应用研究进展[J]. 应用化学, 2022, 39(1): 74-85. |
[8] | 张云雷, 赵蔚祎, 麻拴红, 周峰. 仿生干湿摩擦黏附器件的研究进展[J]. 应用化学, 2022, 39(1): 86-98. |
[9] | 槐梦娇, 刘陶雪婷, 姜忠义. 水通道蛋白启发下的人工水通道研究进展[J]. 应用化学, 2022, 39(1): 99-109. |
[10] | 徐可睿, 钟志铭, 徐惠东, 王璇, 赵敏, 吴传德. 复合仿生催化体系的构建与高效有氧氧化芳基烷烃[J]. 应用化学, 2017, 34(9): 1079-1085. |
[11] | 冯晓东, 林晓濛, 王杨, 白凤英, 邢永恒. 聚吡唑硼酸盐钒氧配合物的合成及对苯酚红催化溴化活性[J]. 应用化学, 2016, 33(11): 1303-1309. |
[12] | 程时远, 李小青, 杨婷婷. 线性聚胺介导的SiO2 杂化纳米粒子的仿生合成[J]. 应用化学, 2009, 26(6): 633-636. |
[13] | 陈先勇, 唐琴, 胡卫兵. 均匀大颗粒球形碳酸钙的仿生合成[J]. 应用化学, 2009, 26(5): 562-565. |
[14] | 贺怀贞, 李剑利, 武祥龙, 王陆瑶, 史真. α-萘基环己基甲基酮仿生合成新方法[J]. 应用化学, 2006, 23(6): 685-687. |
[15] | 吴刚, 陈龙, 谢安建, 沈玉华, 李士阔, 张庆凤. n,o-羧甲基壳聚糖体系中纳米碳酸钙的仿生合成[J]. 应用化学, 2006, 23(10): 1076-1080. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||