应用化学 ›› 2022, Vol. 39 ›› Issue (1): 99-109.DOI: 10.19894/j.issn.1000-0518.210484
收稿日期:
2021-09-28
接受日期:
2021-11-04
出版日期:
2022-01-01
发布日期:
2022-01-10
通讯作者:
姜忠义
作者简介:
第一联系人:共同第一作者
基金资助:
HUAI Meng-Jiao,LIU Tao-Xue-Ting,JIANG Zhong-Yi()
Received:
2021-09-28
Accepted:
2021-11-04
Published:
2022-01-01
Online:
2022-01-10
Contact:
Zhong-Yi JIANG
About author:
zhyjiang@tju.edu.cnSupported by:
摘要:
受水通道蛋白(AQP)结构与功能启发,含有生物水通道或人工水通道(AWC)的仿生膜近年来取得了显著进展。借鉴AQP的传输特性,所制备的AWC获得了高度的选择性及水快速运输能力。通过对AQP的结构原型进行分析,对标AWC中H2O分子选择性和渗透特性,尝试提出了“门控效应”、“润湿效应”和“排队效应”3种效应,并对现有嵌入仿生膜中AWC的研究工作进行了分析与总结。可以预见,上述3种效应有望为AWC和仿生膜的设计制备开拓新的路径。
中图分类号:
槐梦娇, 刘陶雪婷, 姜忠义. 水通道蛋白启发下的人工水通道研究进展[J]. 应用化学, 2022, 39(1): 99-109.
HUAI Meng-Jiao, LIU Tao-Xue-Ting, JIANG Zhong-Yi. Research Progress of Artificial Water Channels Inspired by Aquaporin[J]. Chinese Journal of Applied Chemistry, 2022, 39(1): 99-109.
图2 AQP1结构模型[27-28](a)AQP1单体侧视图; (b)AQP1四聚体结构俯视图
Fig.2 The structure of AQP1[27-28](a)side view of AQP monomer; (b)side and top view of the tetrameric AQP complex with the four monomers
图3 基于3A尺寸仿生思想的AWC(a)两性离子配位聚合物形成的螺旋管[32];(b)咪唑四聚体通道[16];(c)Aquafoldamer通道[34](注:1 ? = 0.1 nm)
Fig.3 Artificial water channel based on 3A size(a)Helical tube formed by zwitterionic coordination polymers[32];(b)Imidazole I-quartets water channels[16];(c)Aquafoldamer-based water channels[34]
人工水通道 AWC | 孔道尺寸 Pore size/nm | 单通道水通量(个H2O/s) Water permeability per channel(H2O/s) | 离子排斥能力 Salt rejection |
---|---|---|---|
两性离子通道[ Zwitterionic coordination polymers water channels | 0.26 | - | - |
四聚体咪唑通道[ Imidazole I?quartets water channels | 0.26 | 1.5×106 | √ |
Aquafoldamer通道 Aquafoldamer?based water channels | 0.28 | 2.2×108[ | √ |
1.6×109[ | √ | ||
3×109[ | √ | ||
杂化芳烃 (PAH[ Peptide?appended hybrid [ | ~0.3 | >109 | √ |
表1 几种AWC尺寸、水通量和离子排斥能力
Table 1 Pore size, water permeability and salt rejection of artificial water channels
人工水通道 AWC | 孔道尺寸 Pore size/nm | 单通道水通量(个H2O/s) Water permeability per channel(H2O/s) | 离子排斥能力 Salt rejection |
---|---|---|---|
两性离子通道[ Zwitterionic coordination polymers water channels | 0.26 | - | - |
四聚体咪唑通道[ Imidazole I?quartets water channels | 0.26 | 1.5×106 | √ |
Aquafoldamer通道 Aquafoldamer?based water channels | 0.28 | 2.2×108[ | √ |
1.6×109[ | √ | ||
3×109[ | √ | ||
杂化芳烃 (PAH[ Peptide?appended hybrid [ | ~0.3 | >109 | √ |
图5 亲疏水交替的通道1与更弱作用的通道2的运输速率对比[35]
Fig.5 Comparison of the transport rate between channel 1 with alternating hydrophilic and hydrophobic channels and channel 2 with weaker action[35]
图6 H2O分子在(a)亲水性通道(b)疏水性通道(c)亲疏水位点交替通道中的排布情况[44]
Fig.6 Arrangement of water molecules in (a) hydrophilic channel (b) hydrophobic channel(c) hydrophilic and hydrophobic water level point alternating channel[44]
图7 合成水通道中H2O分子的排列(a)两性离子配位聚合物形成的螺旋管[32];(b)咪唑四聚体通道[16];(c)包覆二氯甲烷和甲醇分子的一维通道1和包覆水或甲醇分子的一维通道2[35];(d)H2O分子在不同直径CNTPs中的不同氢键连接方式[49]
Fig.7 The arrangement of water molecules in the artificial water channel(a)Helical tube formed by zwitterionic coordination polymers[32];(b)Imidazole I-quartets water channels[16];(c) Chemical and crystal structures of 1, encapsulating 1D chain of dichloromethane (CH2Cl2) or methanol (MeOH)90 molecules. And Chemical and crystal structures of 2, encapsulating the 1D chain of water or MeOH molecules[36]; (d) Different H-bonding patterns for water in the bulk state and CNTPs of different diameters[49]
1 | ELIMELECH M, PHILLIP W A.The future of seawater desalination: energy, technology, and the environment[J]. Science, 2011, 333(6043): 712-717. |
2 | HU X B, CHEN Z, TANG G, et al. Single-molecular artificial transmembrane water channels[J]. J Am Chem Soc, 2012, 134(20): 8384-8387. |
3 | LIU Y, HEJAZI M, KYLE P, et al. Global and regional evaluation of energy for water[J]. Environ Sci Technol, 2016, 50(17): 9736-9745. |
4 | TANG C, WANG Z, PETRINIC I, et al. Biomimetic aquaporin membranes coming of age[J]. Desalination, 2015, 368: 89-105. |
5 | VOGEL J, GROTH J S, NIELSE N, et al. Hollow fiber module having composite thin film layer modified fiber comprises an aquaporin water channel: Korea, 20-2014-0004365[P]. 2014-07-21. |
6 | SPULBER M, GERSTANDT K. Diblock copolymer vesicles and separation membranes comprising aquaporin water channels and methods of making and using them: WO 2018/141985 Al[P]. 2018-09-08. |
7 | DAMIANO A E. Water channel proteins in the human placenta and fetal membranes[J]. Placenta, 2011, 32: S207-S211. |
8 | GALIZIA L, PIZZINO A, FERNANDEZ J, et al. Functional interaction between AQP2 and TRPV4 in renal cells[J]. J Cell Biochem, 2012, 113(2): 580-589. |
9 | MATSUKI-FUKUSHIMA M, FUJITA-YOSHIGAKI J, MURAKAMI M, et al. Involvement of AQP6 in the mercury-sensitive osmotic lysis of rat parotid secretory granules[J]. J Membr Biol, 2013, 246(3): 209-214. |
10 | PRESTON G M, CARROLL T P, GUGGINO W B, et al. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein[J]. Science, 1992, 256(5055): 385-387. |
11 | CHRISPEELS M J, AGRE P. Aquaporins: water channel proteins of plant and animal cells[J]. Trends Biochem Sci, 1994, 19(10): 421-425. |
12 | CONNOLLY D L, SHANAHAN C M, WEISSBERG P L. The aquaporins: a family of water channel proteins[J]. Int J Biochem Cell Biol, 1998, 30(2): 169-172. |
13 | HONG W, TIAN T Z, XIAN S L, et al. Enhancing the separation performance by introducing bioadhesive bonding layer in composite pervaporation membranes for ethanol dehydration[J].Chinese J Chem Eng, 2015, 23(2): 372-378. |
14 | HUAI Q Z, WEI Q O, FENG Z, et al. Chiral crystallization of aromatic helical foldamers via complementarities in shape and end functionalities[J]. Chem Sci, 2012, 3: 2042. |
15 | WANG S F, XIE Y, HE G W, et al. Graphene oxide membranes with heterogeneous nanodomains for efficient CO2 separations[J]. Angew Chem Int Ed, 2017, 56(45): 14246-14251. |
16 | BARBOIU M, GILLES A. From natural to bioassisted and biomimetic artificial water channel system[J]. Acc Chem Res, 2013, 46(12): 2814-2823. |
17 | BARBOIU M. Artificial water channels: incipient innovative developments[J]. Chem Commun, 2016, 52(33): 5657- 5665. |
18 | HUO Y, ZENG H. “Sticky”-ends-guided creation of functional hollow nanopores for guest encapsulation and water transport[J]. Acc Chem Res, 2016, 49(5): 922-930. |
19 | SONG W, KUMAR M. Artificial water channels: toward and beyond desalination[J]. Curr Opin Chem Eng, 2019, 25: 9-17. |
20 | SONG W, LANG C, SHEN Y, et al. Design considerations for artificial water channel-based membranes[J]. Annu Rev Mater Res, 2018, 48(1): 57-82. |
21 | SHEN Y X, SONG W C, BARDEN D R, et al. Achieving high permeability and enhanced selectivity for angstrom-scale separations using artificial water channel membranes[J]. Nat Commun, 2018, 9(1): 2294. |
22 | TU Y M, SONG W, REN T, et al. Rapid fabrication of precise high-throughput filters from membrane protein nanosheets[J]. Nat Mater, 2020, 19(3): 347-354. |
23 | LANG C, YE D, SONG W, et al. Biomimetic separation of transport and matrix functions in lamellar block copolymer channel-based membranes[J]. ACS Nano, 2019, 13(7): 8292-8302. |
24 | ABAIE E, XU L, SHEN Y X. Bioinspired and biomimetic membranes for water purification and chemical separation: a review[J]. Front Environ Sci Eng, 2021, 15(6): 124. |
25 | GIWA A, HASAN S W, YOUSUF A, et al. Biomimetic membranes: a critical review of recent progress[J]. Desalination, 2017, 420: 403-424. |
26 | FUWAD A, RYU H, MALMSTADT N, et al. Biomimetic membranes as potential tools for water purification: preceding and future avenues[J]. Desalination, 2019, 458: 97-115. |
27 | GONEN T, WALZ T. The structure of aquaporins[J]. Q Rev Biophys, 2006, 39(4): 361-396. |
28 | GANG R, ANCHI C, VIJAY R, et al. Three-dimensional fold of the human AQP1 water channel determined at 4 Å resolution by electron crystallography of two-dimensional crystals embedded in ice[J]. J Mol Biol, 2000, 301(2): 369-387. |
29 | SUI H, HAN B G, LEE J, et al. Structural basis of water-specific transport through the AQP1 water channel[J]. Nature, 2001, 414: 872-878. |
30 | MURATA K, MITSUOKA K, HIRAI T, et al. Structural determinants of water permeation through Aquaporin-1[J]. Nature, 2000, 407: 599-605. |
31 | TAJKHORSHID, EMAD N, PETER J M, et al. Control of the selectivity of the aquaporin water channel family by global orientational tuning[J]. Science, 2002, 296(5567): 525-530. |
32 | FEI Z, ZHAO D, GELDBACH T J, et al. A Synthetic zwitterionic water channel: characterization in the solid state by X-ray crystallography and NMR spectroscopy[J]. Angew Chem, 2005, 117: 5866-5871. |
33 | SCHNEIDER, SUSANNE, LICSANDRU, et al. Columnar self-assemblies of triarylamines as scaffolds for artificial biomimetic channels for ion and for water transport[J]. J Am Chem Soc, 2017, 139(10): 3721-3727. |
34 | SHEN J, FAN J R, YE R J, et al. Polypyridine-based helical amide foldamer channels: rapid transport of water and protons with high ion rejection[J]. Angew Chem Int Ed, 2020, 132(32): 13430-13436. |
35 | SHEN, J, YE R, ROMANIES A, et al. Aquafoldmer-based aquaporin-like synthetic water channel[J]. J Am Chem Soc, 2020, 142 (22): 10050-10058. |
36 | SONG W, JOSHI H, CHOWDHURY R, et al. Artificial water channels enable fast and selective water permeation through water-wire networks[J]. Nat Nano, 2020, 15(1): 1-7. |
37 | ZHAO H, SHENG S, HONG Y, et al. Proton gradient-induced water transport mediated by water wires inside narrow aquapores of aquafoldamer molecules[J]. J Am Chem Soc, 2012, 136(40): 14270-14276. |
38 | XUE W, KO S, CHAVALIT R, et al. Binding TiO2 nanoparticles to forward osmosis membranes via MEMO-PMMA-Br monomer chains for enhanced filtration and antifouling performance[J]. RSC Adv, 2018, 8(34): 19024-19033. |
39 | HORNER A, SILIGAN C, CORNEAN A, et al. Positively charged residues at the channel mouth boost single-file water flow[J]. Faraday Discuss, 2018, 10: 1039. |
40 | GUAN K C, JIA Y D, LIN Y Q, et al. Chemically Converted graphene nanosheets for the construction of ion-exclusion nanochannel membranes[J]. Nano Lett, 2021, 21(8): 3495-3502. |
41 | LYNCH C I, RAO S L, SHANLIN M S P, et al. Water in nanopores and biological channels: a molecular simulation perspective[J]. Chem Rev, 2020, 120(18): 10298-10335. |
42 | ANDREAS H, FLORIAN Z, JOHANNES P, et al. The mobility of single-file water molecules is governed by the number of H-bonds they may form with channel-lining residues[J]. Sci Adv, 2015, 1(2): e1400083. |
43 | KAUCHER S, PETERCA M, DULCEY A, et al. Selective transport of water mediated by porous dendritic dipeptides[J]. J Am Chem Soc, 2007, 129(38): 11698-11699. |
44 | BARBOIU M. Artificial water channels[J]. Angew Chem Int Ed, 2012, 51(47): 11674-11676. |
45 | BARBOIU M. Imidazole-quartet water and proton dipolar channels[J]. Angew Chem Int Ed, 2011, 50(48): 11366-11372. |
46 | ZHAO Q, BUAHLER M J, Nonlinear viscous water at nanoporous two-dimensional interfaces resists high-speed flow through cooperativity[J]. Nano Lett, 2015, 15(6): 3939-3944. |
47 | SENDNER C, HORINEK D, BOCQVET L, et al. Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion[J]. Langmuir, 2009, 25(18): 10768-10781. |
48 | LICSANDRU E, KOCSIS I, SHEN Y X, et al. Salt-excluding artificial water channels exhibiting enhanced dipolar water and proton translocation[J]. J Am Chem Soc, 2016, 138(16): 5403-5409. |
49 | TUNUGUNTL R H, HENLEY R Y, YAO Y C, et al. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins[J]. Science, 2017, 357(6353): 792-796. |
50 | GENG J, KIM K, ZHANG J F, et al. Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes[J]. Nature, 2014, 514(7524): 612-615. |
51 | HUANG L B, VINCENZO M D, LI Y H. Artificial water channels: towards biomimetic membranes for desalination[J]. Chem Eur J, 2021, 27(7): 2224-2239. |
[1] | 赵常利, 秦明高, 窦晓秋, 冯传良. 纳米颗粒增强的手性超分子水凝胶成骨性能[J]. 应用化学, 2022, 39(1): 177-187. |
[2] | 伍青林, 任玉彬, 翟小威, 陈东, 刘凯. 生成模型在蛋白质序列设计中的应用[J]. 应用化学, 2022, 39(1): 3-17. |
[3] | 江富祥, 刘巧珍, 王果, 陈河如. 由1,5-二羟基多羟基烃合成哌啶衍生物[J]. 应用化学, 2013, 30(07): 769-775. |
[4] | 李彗晶, 王海水. 硼酸对赖氨酸盐酸盐在半胱氨酸自组装膜上晶体生长的影响[J]. 应用化学, 2012, 29(09): 1041-1045. |
[5] | 刘倩, 卢俊瑞, 辛春伟, 鲍秀荣, 刘玉清, 朱姗姗, 邹敏. N-(5-氯-2-羟苯基)氨基酸酯的合成、表征及抑菌活性[J]. 应用化学, 2010, 27(09): 1012-1016. |
[6] | 蔡冬清, 吴正岩, 吴林, 吴跃进, 朱剑豪, 余增亮. 低能量离子束轰击对碳纳米管中杂质的去除[J]. 应用化学, 2010, 27(08): 987-989. |
[7] | 冯乙巳, 董文杰, 张博, 汤琳, 谭问非, 许华建. 天然海洋环酯肽Stereocalpin A中间体的合成[J]. 应用化学, 2010, 27(02): 240-242. |
[8] | 阮湘元,曾绍汉, 蔡明招, 徐经伟. GSH-Cd(Ⅱ)、Cu(Ⅱ)配合物在硅片表面形貌的AFM 分析[J]. 应用化学, 2009, 26(12): 1498-1500. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||