[1] | WANG Jierong,HE Puming.Research on Influence of China's Grain Consumption Structure on Grain Import Trade[J]. Prices Monthly,2016,34(6):51-54(in Chinese). 王洁蓉,何蒲明. 我国粮食消费结构对粮食进口贸易的影响研究[J]. 价格月刊,2016,34(6):51-54. | [2] | KONG Xiangcai,WANG Guixia.The Abatement Path of Agricultural Pollution in the Background of Supply Side Reform in Agriculture Sector[J]. Soc Sci Yunnan,2017,37(6):53-57(in Chinese). 孔祥才,王桂霞. 农业供给侧改革背景下中国农业污染的治理路径[J]. 云南社会科学,2017,37(6):53-57. | [3] | ZHANG Ningxin.Analysis on the Current Situation and Influence of Agricultural Pollution[J]. Agric Technol Service,2015,32(12):228-228(in Chinese). 张宁馨. 农业污染现状与影响浅析[J]. 农技服务,2015,32(12):228-228. | [4] | Guo J J,Zhang Y,Luo Y L,et al. Efficient Fluorescence Resonance Energy Transfer Between Oppositely Charged CdTe Quantum Dots and Gold Nanoparticles for Turn-On Fluorescence Detection of Glyphosate[J]. Talanta,2014,125(7):385-392. | [5] | Miao S S,Wu M S,Ma L Y,et al. Electrochemiluminescence Biosensor for Determination of Organophosphorous Pesticides Based on Bimetallic Pt-Au/Multi-walled Carbon Nanotubes Modified Electrode[J]. Talanta,2016,158(9):142-151. | [6] | He T,Zhu J,Nie Y,et al. Nanobody Technology for Mycotoxin Detection:Current Status and Prospects[J]. Toxins,2018,10(5):1-19. | [7] | Luo Y,Liu X J,Li J K.Updating Techniques on Controlling Mycotoxins-A Review[J]. Food Control,2018,89(4):123-132. | [8] | KANG Yunbin.A Exploration into the Problem of Agricultural Pollution in China[J]. Economy Soc,2016,38(10):71-71(in Chinese). 康芸宾. 中国农业污染问题的探究[J]. 经济与社会,2016,38(10):71-71. | [9] | Mardones C,Palma J,Sepulveda C,et al. Determination of Tribromophenol and Pentachlorophenol and Its Metabolite Pentachloroanisole in Asparagus Officinalis by Gas Chromatography/Mass Spectrometry[J]. J Sep Sci,2003,26(9):923-926. | [10] | Zhou T,Xiao X H,Li G K.Microwave Accelerated Selective Soxhlet Extraction for the Determination of Organophosphorus and Carbamate Pesticides in Ginseng with Gas Chromatography/Mass Spectrometry[J]. Anal Chem,2012,84(13):5816-5822. | [11] | Chen C Y,Li W J,Peng K Y.Determination of Aflatoxin M1 in Milk and Milk Powder Using High-Flow Solid-Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry[J]. J Agric Food Chem,2005,53(22):8474-8480. | [12] | Gazzotti T,Lugoboni B,Zironi E,et al. Determination of Fumonisin B1 in Bovine Milk by LC-MS/MS[J]. Food Control,2009,20(12):1171-1174. | [13] | Rubert J,Soler C,Mañes J.Application of an HPLC-MS/MS Method for Mycotoxin Analysis in Commercial Baby Foods[J]. Food Chem,2012,133(1):176-183. | [14] | Liang J S,Yang S L,Luo S L,et al. Ultrasensitive Electrochemiluminescent Detection of Pentachlorophenol Using a Multiple Amplification Strategy Based on a Hybrid Material Made from Quantum Dots, Graphene, and Carbon Nanotubes[J]. Microchim Acta,2014,181(7):759-765. | [15] | Li S H,Wu X J,Liu C H,et al. Application of DNA Aptamers as Sensing Layers for Detection of Carbofuran by Electrogenerated Chemiluminescence Energy Transfer[J]. Anal Chim Acta,2016,941(42):94-100. | [16] | Xia B Y,Yuan Q M,Chu M F,et al. Directly One-Step Electrochemical Synthesis of Graphitic Carbon Nitride/graphene Hybrid and Its Application in Ultrasensitive Electrochemiluminescence Sensing of Pentachlorophenol[J]. Sens Actuat B Chem,2016,228(2):565-572. | [17] | Babamiria B,Salimia A,Hallaj R.Switchable Electrochemiluminescence Aptasensor Coupled with Resonance Energy Transfer for Selective Attomolar Detection of Hg2+ via CdTe@CdS/Dendrimer Probe and Au Nanoparticle Quencher[J]. Biosens Bioelectron,2018,102(4):328-335. | [18] | Du D,Huang X,Cai J,et al. Comparison of Pesticide Sensitivity by Electrochemical Test Based on Acetylcholinesterase Biosensor[J]. Biosens Bioelectron,2007,23(2): 285-289. | [19] | Chiu H Y,Lin Z Y,Tu H L,et al. Analysis of Glyphosate and Aminomethylphosphonic Acid by Capillary Electrophoresis with Electrochemiluminescence Detection[J]. J Chromatogr A,2008,1177(1):195-198. | [20] | Hung Y L,Hsiung T M,Chen Y Y,et al. A Label-free Colorimetric Detection of Lead Ions by Controlling the Ligand Shells of Gold Nanoparticles[J]. Talanta,2010,82(2):516-522. | [21] | Miao W J.Electrogenerated Chemiluminescence and Its Biorelated Applications[J]. Chem Rev,2008,108(7):2506-2553. | [22] | Zhang W,Xiong H W,Chen M M,et al. Surface-Enhanced Molecularly Imprinted Electrochemiluminescence Sensor Based on Ru@SiO2 for Ultrasensitive Detection of Fumonisin B1[J]. Biosens Bioelectron,2017,96(10):55-61. | [23] | Luo L J,Li L B,Xu X X,et al. Determination of Pentachlorophenol by Anodic Electrochemiluminescence of Ru(bpy)$^{2+}_{3}$ Based on Nitrogen-Doped Graphene Quantum Dots as Coreactant[J]. RSC Adv,2017,7:50634-50642. | [24] | Zhou L M,Huang J S,Yang L,et al. Enhanced Electrochemiluminescence Based on Ru(bpy)$^{2+}_{3}$-Doped Silica Nanoparticles and Graphene Composite for Analysis of Melamine in Milk[J]. Anal Chim Acta,2014,824:57-64. | [25] | Li L B,Yu B,Zhang X P,et al. A Novel Electrochemiluminescence Sensor Based on Ru(bpy)$^{2+}_{3}$/N-Doped Carbon Nanodots System for the Detection of Bisphenol A[J]. Anal Chim Acta,2014,895:104-111. | [26] | Li L B,Liu D,Mao H P,et al. Multifunctional Solid-state Electrochemiluminescence Sensing Platform Based on Poly(ethylenimine) Capped N-doped Carbon Dots as Novel Co-reactant[J]. Biosens Bioelectron,2017,899:489-495. | [27] | Richter M M.Electrochemiluminescence(ECL)[J]. Chem Rev,2004,104(6):3003-3036. | [28] | Bezman R,Faulkner L R.Mechanisms of Chemiluminescent Electron-Transfer Reactions.V.Absolute Measurements of Rubrene Luminescence in Benzonitrile and N,N-Dimethylformamide[J]. J Am Chem Soc,1972,94(18):6324-6330. | [29] | Rubinstein I,Bard A J. Electrogenerated Chemiluminescence.37.Aqeous ECL Systems Based on Ru(2,2'-bipyridine)$^{2+}_{3}$ and Oxalate or Organic Acid[J]. J Am Chem Soc,1981,103(3):512-516. | [30] | Fabrizio E F,Prieto I,Bard A J.Hydrocarbon Cation Radical Formation by Reduction of Peroxydisulfate[J]. J Am Chem Soc,2000,122(20):4996-4997. | [31] | Collinson M M,Wightman R M.High-frequency Generation of Electrochemiluminescence at Microelectrodes[J]. Anal Chem,1993,65(19):2576-2582. | [32] | Montano L A,Ingle J D.Investigation of the Lucigenin Chemiluminescence Reaction[J]. Anal Chem,1979,51(7):919-926. | [33] | Haapakka K E,Kankare J J.The Mechanism of the Electrogenerated Chemiluminescence of Luminol in Aqueous Alkaline Solution[J]. Anal Chim Acta,1982,138:263-275. | [34] | Bae Y,Myung N,Bard A J.Electrochemistry and Electrogenerated Chemiluminescence of CdTe Nanoparticles[J]. Nano Lett,2004,4(6):1153-1161. | [35] | Fiaccabrino G C,Koudelka-Hep M,Hsueh Y T,et al. Electrochemiluminescence of Tris(2,2'-bipyridine)ruthenium in Water at Carbon Microelectrodes[J]. Anal Chem,1998,70(19):4157-4161. | [36] | Zu Y B,Bard A J. Electrogenerated Chemiluminescence.66.The Role of Direct Coreactant Oxidation in the Ruthenium Tris(2,2')bipyridyl/Tripropylamine System and the Effect of Halide Ions on the Emission Intensity[J]. Anal Chem,2000,72(14):3223-3232. | [37] | Xiong C Y,Wang H J,Yuan Y L,et al. A Novel Solid-State Ru(bpy)$^{2+}_{3}$ Electrochemiluminescence Immunosensor Based on Poly(ethylenimine) and Polyamidoamine Dendrimers as Co-reactants[J]. Talanta,2015,131(1):192-197. | [38] | Huang X M,Deng X,Qi W J,et al. Highly Sensitive Luminol Electrochemiluminescence Immunosensor Based on Platinum-Gold Alloy Hybrid Functionalized Zinc Oxide Nanocomposites for Catalytic Amplification[J]. Sens Actuat B Chem,2018,273(11):466-472. | [39] | Zhang Q G,Xu G F,Gong L S,et al. An Enzyme-assisted Electrochemiluminescent Biosensor Developed on Order Mesoporous Carbons Substrate for Ultrasensitive Glyphosate Sensing[J]. Electrochim Acta,2015,186(27):624-630. | [40] | Liang H,Song D D,Gong J M.Signal-on Electrochemiluminescence of Biofunctional CdTe Quantum Dots for Biosensing of Organophosphate Pesticides[J]. Biosens Bioelectron,2014,53(6):363-369. | [41] | Wang B X,Zhong X,Chai Y Q,et al. Ultrasensitive Electrochemiluminescence Biosensor for Organophosphate Pesticides Detection Based on Carboxylated Graphitic Carbon Nitride-Poly(ethylenimine) and Acetylcholinesterase[J]. Electrochim Acta,2017,224(6):194-200. | [42] | Chen H M,Zhang H,Yuan R,et al. Novel Double-Potential Electrochemiluminescence Ratiometric Strategy in Enzyme-Based Inhibition Biosensing for Sensitive Detection of Organophosphorus Pesticides[J]. Anal Chem,2017,89(5):2823-2829. | [43] | Upadhyay S,Rao G R,Sharma M K,et al. Immobilization of Acetylcholineesterase-Choline Oxidase on a Gold-Platinum Bimetallic Nanoparticles Modified Glassy Carbon Electrode for the Sensitive Detection of Organophosphate Pesticides, Carbamates and Nerve Agents[J]. Biosens Bioelectron,2009,25(4):832-838. | [44] | Yang Y,Asiri A M,Du D,et al. Acetylcholinesterase Biosensor Based on a Gold Nanoparticle-Polypyrrole-Reduced Graphene Oxide Nanocomposite Modified Electrode for the Amperometric Detection of Organophosphorus Pesticides[J]. Analyst,2014,139(12):3055-3060. | [45] | Rotariu L,Zamfir L G,Bala C.A Rational Design of the Multiwalled Carbon Nanotube-7,7,8,8-Tetracyanoquinodimethan Sensor for Sensitive Detection of Acetylcholinesterase Inhibitors[J]. Anal Chim Acta,2012,748(42):81-88. | [46] | Wang B X,Wang H J,Zhong X,et al. A Highly Sensitive Electrochemiluminescence Biosensor for the Detection of Organophosphate Pesticides Based on Cyclodextrin Functionalized Graphitic Carbon Nitride and Enzyme Inhibition[J]. Chem Commun,2016,52(28):5049-5052. | [47] | WU Zhongping,GAO Wei,YANG Hong.Feature and Application of Zirconium and Zirconium Clad Plate for Pressure Vessel[J]. Jiangsu Chem Ind,2004,32(5):24-27(in Chinese). 武中平,高巍,杨红. 氨基甲酸酯类农药残留测定方法的研究进展[J]. 江苏化工,2004,32(5):24-27. | [48] | Lin Z Y,Chen G N.Determination of Carbamates in Nature Water Based on the Enhancement of Electrochemiluminescent of Ru(bpy)$^{2+}_{3}$ at the Multi-wall Carbon Nanotube-Modified Electrode[J]. Talanta,2006,70(1):111-115. | [49] | Li S H,Liu C H,Han B J,et al. An Electrochemiluminescence Aptasensor Switch for Aldicarb Recognition via Ruthenium Complex-Modified Dendrimers on Multiwalled Carbon Nanotubes[J]. Microchim Acta,2017,184(6):1669-1675. | [50] | Yang S L,Liang J S,Luo S L,et al. Supersensitive Detection of Chlorinated Phenols by Multiple Amplification Electrochemiluminescence Sensing Based on Carbon Quantum Dots/Graphene[J]. Anal Chem,2013,85(16):7720-7725. | [51] | Jiang D,Du X J,Liu Q,et al. One-Step Thermal-Treatment Route to Fabricate Well-Dispersed ZnO Nanocrystals on Nitrogen-Doped Graphene for Enhanced Electrochemiluminescence and Ultrasensitive Detection of Pentachlorophenol[J]. ACS Appl Mater Interfaces,2015,7(5):3093-3100. | [52] | Luo S L,Xiao H,Yang S L,et al. Ultrasensitive Detection of Pentachlorophenol Based on Enhanced Electrochemiluminescence of Au Nanoclusters/Graphene Hybrids[J]. Sens Actuat B Chem,2014,194(4):325-331. | [53] | Wu W Q,Xiao H,Luo S L,et al. A Highly Stable and Effective Electrochemiluminescence Platform of Copper Oxide Nanowires Coupled with Graphene for Ultrasensitive Detection of Pentachlorophenol[J]. Sens Actuat B Chem,2016,222(1):747-754. | [54] | Wang H F,He Y,Ji T R,et al. Surface Molecular Imprinting on Mn-Doped ZnS Quantum Dots for Room-Temperature Phosphorescence Optosensing of Pentachlorophenol in Water[J]. Anal Chem,2009,81(4):1615-1621. | [55] | Tang C L,Meng G W,Huang Q,et al. A Silica Xerogel Thin Film Based Fluorescent Sensor for Pentachlorophenol Rapid Trace Detection[J]. Sens Actuat B Chem,2012,171(172):332-337. | [56] | Wu Y H.Nano-TiO2 Dihexadecylphosphate Based Electrochemical Sensor for Sensitive Determination of Pentachlorophenol[J]. Sens Actuat B Chem,2009,137(1):180-187. | [57] | SUN Li,HUO Jianglian,CUI Weigang,et al. Current Methods for the Determination of Mycotoxins in Grain Products[J]. Chinese J Anal Chem,2013,34(19):817-822(in Chinese). 孙利,霍江莲,崔维刚,等. 粮食产品中真菌毒素的色谱及质谱检测技术研究进展[J]. 食品科学,2013,34(19):817-822. | [58] | Xu G F,Zhang S P,Zhang Q R,et al. Magnetic Functionalized Electrospun Nanofibers for Magnetically Controlled Ultrasensitive Label-Free Electrochemiluminescent Immune Detection of Aflatoxin B1[J]. Sens Actuat B Chem,2016,222(6):707-713. | [59] | Lv X H,Li Y Y,Cao Wei,et al. A Label-free Electrochemiluminescence Immunosensor Based on Silver Nanoparticle Hybridized Mesoporous Carbon for the Detection of Aflatoxin B1[J]. Sens Actuat B Chem,2014,202(4):53-59. | [60] | Wu L,Ding F,Yin W M,et al. From Electrochemistry to Electroluminescence:Development and Application in a Ratiometric Aptasensor for Aflatoxin B1[J]. Anal Chem,2017,89(14):7578-7585. | [61] | Lv X H,Li Y Y,Yan T,et al. Electrochemiluminescence Modified Electrodes Based on RuSi@Ru(bpy)$^{2+}_{3}$ Loaded with Gold Functioned Nanoporous CO/Co3O4 for Detection of Mycotoxin Deoxynivalenol[J]. Biosens Bioelectron,2015,70(8):28-33. | [62] | Zheng H L,Yi H,Dai H,et al. Fluoro-Coumarin Silicon Phthalocyanine Sensitized Integrated Electrochemiluminescence Bioprobe Constructed on TiO2 MOFs for the Sensing of Deoxynivalenol[J]. Sens Actuat B Chem,2018,269(9):27-35. | [63] | Yang L L,Zhang Y,Li R B,et al. Electrochemiluminescence Biosensor for Ultrasensitive Determination of Ochratoxin A in Corn Samples Based on Aptamer and Hyperbranched Rolling Circle Amplification[J]. Biosens Bioelectron,2015,70(8):268-274. | [64] | Wang Q L,Chen M M,Zhang H Q,et al. Solid-state Electrochemiluminescence Sensor Based on RuSi Nanoparticles Combined with Molecularly Imprinted Polymer for the Determination of Ochratoxin A[J]. Sens Actuat B Chem,2016,222(1):264-269. | [65] | Chen M M,Wang Y,Cheng S B,et al. Construction of Highly Efficient Resonance Energy Transfer Platform Inside a Nanosphere for Ultrasensitive Electrochemiluminescence Detection[J]. Anal Chem,2018,90(8):5075-5081. | [66] | Gan N,Zhou J,Xiong P,et al. An Ultrasensitive Electrochemiluminescent Immunoassay for Aflatoxin M1 in Milk, Based on Extraction by Magnetic Graphene and Detection by Antibody-Labeled CdTe Quantumn Dots-Carbon Nanotubes Nanocomposite[J]. Toxins,2013,5(5):865-883. | [67] | Wang Y G,Zhao G H,Li X J,et al. Lectrochemiluminescent Competitive Immunosensor Based on Polyethyleneimine Capped SiO2 Nanomaterials as Labels to Release Ru(bpy)$^{2+}_{3}$ Fixed in 3D Cu/Ni Oxalate for the Detection of Aflatoxin B1[J]. Biosens Bioelectron,2018,101(3):290-296. | [68] | Tan Y,Chu X,Shen G L,et al. A Signal-Amplified Electrochemical Immunosensorfor Aflatoxin B1 Determination in Rice[J]. Anal Biochem,2009,387(1):82-86. | [69] | Masoomi L,Sadeghi O,Banitaba M H,et al. A Non-enzymatic Nanomagnetic Electro-immunosensor for Determination of Aflatoxin B1 as a Model Antigen[J]. Sens Actuat B Chem,2013,177(2):1122-1127. | [70] | Daly S J,Keating G J,Dillon P P,et al. Development of Surface Plasmon Resonance-based Immunoassay for Aflatoxin B1[J]. J Agric Food Chem,2000,48(11):5097-5104. | [71] | Dinckaya E,Kinik Ö,Sezgintürk M K,et al. Immobilization of Anti-aflatoxin B1 Antibody by UV Polymerization of Aniline and Aflatoxin B1 Detection via Electrochemical Impedance Spectroscopy[J]. Artif Cells Blood Substit Immobil Biotechnol,2012,40(6):385-390. | [72] | Shim W B,Mun H,Joung H A,et al. Chemiluminescence Competitive Aptamer Assay for the Detection of Aflatoxin B1 in Corn Samples[J]. Food Control,2014,36(1):30-35. | [73] | Xu X,Liu X J,Li Y B,et al. A Simple and Rapid Optical Biosensor for Detection of Aflatoxin B1 Based on Competitive Dispersion of Gold Nanorods[J]. Biosens Bioelectron,2013,47(9):361-367. | [74] | Zeng W J,Liao N,Lei Y M,et al. Hemin as Electrochemically Regenerable Co-Reaction Accelerator for Construction of an Ultrasensitive PTCA-Based Electrochemiluminescent Aptasensor[J]. Biosens Bioelectron,2018,100(2):490-496. | [75] | Wang Z P,Duan N,Hun X,et al. Electrochemiluminescent Aptamer Biosensor for the Determination of Ochratoxin A at a Gold-Nanoparticles-Modified Gold Electrode Using N-(Aminobutyl)-N-ethylisoluminol as a Luminescent Label[J]. Anal Bioanal Chem,2010,398(5):2125-2132. | [76] | Yuan Y L,Wei S Q,Liu G P,et al. Ultrasensitive Electrochemiluminescent Aptasensor for Ochratoxin A Detection with the Loop-Mediated Isothermal Amplification[J]. Anal Chim Acta,2014,811(6):70-75. | [77] | Yang M L,Jiang B Y,Xie J Q,et al. Electrochemiluminescence Recovery-Based Aptasensor for Sensitive Ochratoxin A Detection via Exonuclease-Catalyzed Target Recycling Amplification[J]. Talanta,2014,125(11):45-50. |
|