应用化学 ›› 2019, Vol. 36 ›› Issue (4): 423-430.DOI: 10.11944/j.issn.1000-0518.2019.04.180404

• 研究论文 • 上一篇    下一篇

小分子优先结晶构筑聚合物/非富勒烯共混体系互穿网络结构

衣彦林a,梁秋菊b,李令东a*(),刘剑刚b*(),韩艳春b*()   

  1. a大连理工大学石油与化学工程学院,精细化工国家重点实验室 辽宁 盘锦 124221
    b中国科学院长春应用化学研究所,高分子物理与化学国家重点实验室 长春 130022
  • 收稿日期:2018-12-20 接受日期:2019-01-23 出版日期:2019-04-01 发布日期:2019-04-02
  • 通讯作者: 李令东,刘剑刚,韩艳春
  • 基金资助:
    中央高校基本科研业务费(DUT14RC(3)081,DUT17LK17)教育部留学归国人员科研启动基金(2015年07月批次)项目资助

Constructing Interpenetrating Network of Polymer/Non-fullerene Blend System by Small Molecule Preferential Crystallization

YI Yanlina,LIANG Qiujub,LI Lingdonga*(),LIU Jian'gangb*(),HAN Yanchunb*()   

  1. aState Key Laboratory of Fine Chemicals,School of Petroleum and Chemical Engineering,Dalian University of Technology,Panjin,Liaoning 124221,China
    bState Key Laboratory of Polymer Physics and Chemistry,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,Changchun 130022,China
  • Received:2018-12-20 Accepted:2019-01-23 Published:2019-04-01 Online:2019-04-02
  • Contact: LI Lingdong,LIU Jian'gang,HAN Yanchun
  • Supported by:
    Supported by the Fundamental Research Funds for the Central Universities(No.DUT14RC(3)081, No.DUT17LK17), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry(No.2015.07)

摘要:

非富勒烯小分子受体(SMAs)有序聚集决定聚合物/非富勒烯共混体系光伏电池的双分子复合几率。 然而,由于非对称相分离聚合物趋于优先形成网络,抑制小分子受体分子结晶。 在聚[(2,6-(4,8-二(5-(2-乙基己基噻吩-2-基)苯并[1,2-b:4,5-b']二噻吩))-alt-(5,5-(1',3'-二-2-噻吩基-5',7'-二(2-乙基己基)苯并[1',2'-c:4',5'-c']二噻吩-4,8-二酮))](PBDB-T)/9-二(2-亚甲基(3-(1,1-二氰基亚甲基)-6,7-二氟-茚酮))-5,5,11,11-四(4-己基苯基)-二噻吩并[2,3-d:2',3'-d']-s-引达省[1,2-b:5,6-b']二噻吩(IT-4F)共混体系,四氢呋喃蒸汽处理可提高IT-4F结晶性,150 ℃热退火可提高PBDB-T的结晶性。 因此,依次利用蒸汽退火和热退火处理薄膜,诱导小分子先结晶、聚合物后结晶,从而降低PBDB-T对小分子扩散的限制,构建高结晶互穿网络结构。 形貌优化后降低了双分子复合,器件光电转换效率从5.95%提高至7.18%。

关键词: 聚合物非富勒烯太阳能电池, 结晶性, 相分离, 形貌, 后处理

Abstract:

The ordered aggregation of non-fullerene small molecular acceptors(SMAs) is critical in determining the charge transport and bimolecular recombination in polymer/SMAs solar cells. However, due to the asymmetric phase separation, the polymers prefer to form crystalline networks, which inhibits the molecular diffusion of SMAs and results in weak crystallinity of SMAs. In poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))](PBDB-T)/9-bis(2-methylene-((3-(1,1-dicyanomethylene)-6,7-difluoro)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene(IT-4F) blends, crystallization of IT-4F could be improved by tetrahydrofuran solvent vapor annealing, while crystallization of PBDB-T could be enhanced by thermal annealing at 150 ℃. Hence, the prior crystallization of IT-4F could be realized by regulating the sequence of two post annealing methods, which facilitates the diffusion of IT-4F and is benefit for the formation of interpenetrating network. The optimization of the film morphology reduced the bimolecular recombination and resulted in an improved device performance from 5.95% to 7.18%.

Key words: polymer non-fullerene solar cells, crystallization, phase separation, morphology, post processing