[1] | Zhao B,He Z,Cheng X,et al. Flexible Polymer Solar Cells with Power Conversion Efficiency of 8.7%[J]. J Mater Chem C,2014,2(26):5077-5082. | [2] | Shaheen S,Radspinner R,Peyghambarian N,et al. Fabrication of Bulk Heterojunction Plastic Solar Cells by Screen Printing[J]. Appl Phys Lett,2001,79(18):2996-2998. | [3] | Krebs F.Fabrication and Processing of Polymer Solar Cells:A Review of Printing and Coating Techniques[J]. Sol Energy Mater Sol Cells,2009,93(4):394-412. | [4] | Cui Y,Yao H,Yang C,et al. Organic Solar Cells with an Efficiency Approaching 15%[J]. Acta Polym Sin,2018,2:223-230. | [5] | Li X,Yao J,Angunawela I,et al. Improvement of Photovoltaic Performance of Polymer Solar Cells by Rational Molecular Optimization of Organic Molecule Acceptors[J]. Adv Energy Mater,2018,8(23):1800815. | [6] | Li S,Ye L,Zhao W,et al. A Wide Band Gap Polymer with a Deep Highest Occupied Molecular Orbital Level Enables 14.2% Efficiency in Polymer Solar Cells[J]. J Am Chem Soc,2018,140(23):7159-7167. | [7] | Zhang S,Qin Y,Zhu J,et al. Over 14% Efficiency in Polymer Solar Cells Enabled by a Chlorinated Polymer Donor[J]. Adv Mater,2018,30(20):1800868. | [8] | Zhang H,Yao H,Hou J,et al. Over 14% Efficiency in Organic Solar Cells Enabled by Chlorinated Nonfullerene Small-Molecule Acceptors[J]. Adv Mater,2018,30(28):1800613. | [9] | Zhang Y,Yao H,Zhang S,et al. Fluorination vs. Chlorination:A Case Study on High Performance Organic Photovoltaic Materials[J]. Sci Chi Chem,2018,61(10):1328-1337. | [10] | Zhao F,Wang C,Zhan X.Morphology Control in Organic Solar Cells[J]. Adv Energy Mater,2018,8(28):1703147. | [11] | Ma W,Tumbleston J,Ye L,et al. Quantification of Nano- and Mesoscale Phase Separation and Relation to Donor and Acceptor Quantum Efficiency, J(SC), and FF in Polymer:Fullerene Solar Cells[J]. Adv Mater,2014,26(25):4234-4241. | [12] | Yang X,Loos J,Veenstra S,et al. Nanoscale Morphology of High-Performance Polymer Solar Cells[J]. Nano Lett,2005,5(4):579-583. | [13] | Howard I,Mauer R,Meister M,et al. Effect of Morphology on Ultrafast Free Carrier Generation in Polythiophene:Fullerene Organic Solar Cells[J]. J Am Chem Soc,2010,132(42):14866-14876. | [14] | Ye L,Zhao W,Li S,et al. High-Efficiency Nonfullerene Organic Solar Cells:Critical Factors That Affect Complex Multi-length Scale Morphology and Device Performance[J]. Adv Energy Mater,2017,7(7):1602000. | [15] | Holliday S,Ashraf R,Wadsworth A,et al. High-Efficiency and Air-Stable P3HT-Based Polymer Solar Cells with a New Non-fullerene Acceptor[J]. Nat Commun,2016,7:11585. | [16] | Zhao F,Dai S,Wu Y,et al, Single-Junction Binary-Blend Nonfullerene Polymer Solar Cells with 12.1% Efficiency[J]. Adv Mater,2017,29(18):1700144. | [17] | Li W,Ye L,Li S,et al. A High-Efficiency Organic Solar Cell Enabled by the Strong Intramolecular Electron Push-Pull Effect of the Nonfullerene Acceptor[J]. Adv Mater,2018,30(16):1707170. | [18] | Liang Q,Han J,Song C,et al. Tuning Molecule Diffusion to Control the Phase Separation of the p-DTS(FBTTh2)2/EP-PDI Blend System via Thermal Annealing[J]. J Mater Chem C,2017,5(27):6842-6851. | [19] | Han J,Liang Q,Qu Y,et al. Morphology Control of Non-Fullerene Blend Systems Based on Perylene Diimide Acceptors[J]. Acta Phys Chim Sin,2018,34(4):391-406. |
|