应用化学 ›› 2015, Vol. 32 ›› Issue (11): 1290-1298.DOI: 10.11944/j.issn.1000-0518.2015.11.150145

• 研究论文 • 上一篇    下一篇

芦丁-槲皮素双模板印迹聚合物的制备、表征及识别

王素素a,张月a,李辉ab*(),许苗苗a   

  1. a吉首大学化学化工学院
    b植物资源保护与利用湖南省高校重点实验室 湖南 吉首 416000
  • 收稿日期:2015-04-23 接受日期:2015-08-20 出版日期:2015-11-02 发布日期:2015-11-02
  • 通讯作者: 李辉
  • 基金资助:
    国家自然科学基金面上项目(21077042)及湖南省高校科技创新团队支持计划“环境能源材料与武陵山区矿产资源精深加工”;吉首大学研究生专项(编号:37)

Preparation, Characterization and Recognition Behavior of Quercetin-Rutin Bi-template Molecularly Imprinted Polymers

WAGN Susua,ZHANG Yueb,LI Huiab*(),XU Miaomiaoa   

  1. a College of Chemistry and Chemical Engineering
    bKey Laboratory of Plant Resource Conservation and Utilization,Jishou University,Jishou,Hu'nan 416000,China
  • Received:2015-04-23 Accepted:2015-08-20 Published:2015-11-02 Online:2015-11-02
  • Contact: LI Hui
  • Supported by:
    Supported by the National Natural Science Foundation of China(No.21077042), the Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hu'nan Province

摘要:

以芦丁(RT)-槲皮素(QT)为混合模板分子制备了芦丁-槲皮素复合模板分子印迹聚合物。 优化了制备条件,研究了模板用量比、功能单体及交联剂用量对印迹聚合物吸附性能的影响。 用傅里叶红外光谱和扫描电镜对分子印迹聚合物进行结构表征。 探讨了分子印迹聚合物的吸附动力学、等温吸附及键合位点特征,考察了其选择识别性能,并以分子印迹聚合物为吸附介质,萃取分离芦丁粗提液中的目标化合物。 结果表明,当槲皮素与芦丁的摩尔比为3:2,且模板总量与功能单体及交联剂用量摩尔比为1:8:10时,所得分子印迹聚合物的吸附性能最好,对槲皮素和芦丁的吸附量分别达47.86和60.97 mg/g。 吸附可在3.5 h内达到平衡,显示了较快的吸附动力学。 Scatchard分析表明,分子印迹聚合物基体中存在四类不同性能的键合位点,分别为芦丁和槲皮素的高亲和键合位点及非选择键合位点。 相对分布系数(k=Kd(RT)/Kd(QT),Kd=qe/ρe,Kd为分布系数,qe为平衡吸附量,ρe为平衡质量浓度)大于1,表明了分子印迹聚合物对芦丁具有更高的选择键合作用,当模拟混合物中芦丁和槲皮素浓度分别为0.07和0.03 mmol/L时,相对分布系数和分离因子(α=qe(RT)/qe(QT))分别达6.669和25.02。 另外,以乙腈、甲醇及甲醇-醋酸混合物依次为洗脱剂,通过分子印迹固相萃取可从槐米提取物中分离芦丁和槲皮素两种黄酮类化合物,总回收率分别为96.70%和94.67%。

 

关键词: 分子印迹聚合物, 槲皮素, 芦丁, 混合模板印迹, 分子识别

Abstract:

A bi-templates molecular imprinted polymers(MIPs) was prepared by using quercetin(QT) and rutin(RT) as co-templates. The preparation conditions were optimized. The effects of the molar ratio of two templates and the volume dosage of functional monomer and crosslinker on the adsorption property of MIPs were also studied. Structural characterization of the MIPs was performed by FTIR and SEM. The adsorption dynamics, adsorption isotherm, surface sites distribution and binding selectivity of the MIPs were explored. In addition, the applicability for the MIPs to separate target compound by MIPs solid phase extraction was studied. When the molar ratio of quercetin to rutin is 3:2 and the molar ratio of total templates to functional monomer to cross-linker is 1:8:10, the MIPs obtained possess the highest adsorption capacity toward two templates(47.86 mg/g for quercetin and 60.97 mg/g for rutin). The equilibrium of static adsorption is reached within 3.5 h implying a rapid adsorption dynamics. Scatchard analysis shows that there are four types of binding sites in the polymer matrix, i.e., two types of high affinity binding sites toward two templates and two types of non-selective recognition sites. The relative distribution coefficient(k=Kd(RT)/Kd(QT), Kd=qe/ρe, Kd—distribution coefficient, qe—equilibrium adsorption amount, ρe—equilibrium mass concentration) much higher than 1.0 reveals a high selectivity for the MIPs toward rutin. The highest relative distribution coefficient(6.669) and separation factor(α=qe (RT)/qe(QT))(25.02) are obtained when the concentration of rutin and quercetin in the model mixture is 0.07 and 0.03 mmol/L, respectively. When using acetonitrile, methanol and methanol-acetic acid mixture as effluents in sequence in the MIPs solid phase extraction of crude extract of sophora flower bud, quercetin and rution can be separately extracted with 96.70% and 94.67% recoveries, respectively.

Key words: molecularly imprinted polymers, quercetin, rutin, mixed-templates imprinting, molecular recognition

中图分类号: