Please wait a minute...
应用化学
今天是
应用化学  2015, Vol. 32 Issue (11): 1290-1298    DOI: 10.11944/j.issn.1000-0518.2015.11.150145
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
芦丁-槲皮素双模板印迹聚合物的制备、表征及识别
王素素a,张月a,李辉ab*(),许苗苗a
a吉首大学化学化工学院
b植物资源保护与利用湖南省高校重点实验室 湖南 吉首 416000
Preparation, Characterization and Recognition Behavior of Quercetin-Rutin Bi-template Molecularly Imprinted Polymers
WAGN Susua,ZHANG Yueb,LI Huiab*(),XU Miaomiaoa
a College of Chemistry and Chemical Engineering
bKey Laboratory of Plant Resource Conservation and Utilization,Jishou University,Jishou,Hu'nan 416000,China
全文: PDF(1010 KB)   HTML
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

以芦丁(RT)-槲皮素(QT)为混合模板分子制备了芦丁-槲皮素复合模板分子印迹聚合物。 优化了制备条件,研究了模板用量比、功能单体及交联剂用量对印迹聚合物吸附性能的影响。 用傅里叶红外光谱和扫描电镜对分子印迹聚合物进行结构表征。 探讨了分子印迹聚合物的吸附动力学、等温吸附及键合位点特征,考察了其选择识别性能,并以分子印迹聚合物为吸附介质,萃取分离芦丁粗提液中的目标化合物。 结果表明,当槲皮素与芦丁的摩尔比为3:2,且模板总量与功能单体及交联剂用量摩尔比为1:8:10时,所得分子印迹聚合物的吸附性能最好,对槲皮素和芦丁的吸附量分别达47.86和60.97 mg/g。 吸附可在3.5 h内达到平衡,显示了较快的吸附动力学。 Scatchard分析表明,分子印迹聚合物基体中存在四类不同性能的键合位点,分别为芦丁和槲皮素的高亲和键合位点及非选择键合位点。 相对分布系数(k=Kd(RT)/Kd(QT),Kd=qe/ρe,Kd为分布系数,qe为平衡吸附量,ρe为平衡质量浓度)大于1,表明了分子印迹聚合物对芦丁具有更高的选择键合作用,当模拟混合物中芦丁和槲皮素浓度分别为0.07和0.03 mmol/L时,相对分布系数和分离因子(α=qe(RT)/qe(QT))分别达6.669和25.02。 另外,以乙腈、甲醇及甲醇-醋酸混合物依次为洗脱剂,通过分子印迹固相萃取可从槐米提取物中分离芦丁和槲皮素两种黄酮类化合物,总回收率分别为96.70%和94.67%。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王素素
张月
李辉
许苗苗
关键词 分子印迹聚合物槲皮素芦丁混合模板印迹分子识别    
Abstract

A bi-templates molecular imprinted polymers(MIPs) was prepared by using quercetin(QT) and rutin(RT) as co-templates. The preparation conditions were optimized. The effects of the molar ratio of two templates and the volume dosage of functional monomer and crosslinker on the adsorption property of MIPs were also studied. Structural characterization of the MIPs was performed by FTIR and SEM. The adsorption dynamics, adsorption isotherm, surface sites distribution and binding selectivity of the MIPs were explored. In addition, the applicability for the MIPs to separate target compound by MIPs solid phase extraction was studied. When the molar ratio of quercetin to rutin is 3:2 and the molar ratio of total templates to functional monomer to cross-linker is 1:8:10, the MIPs obtained possess the highest adsorption capacity toward two templates(47.86 mg/g for quercetin and 60.97 mg/g for rutin). The equilibrium of static adsorption is reached within 3.5 h implying a rapid adsorption dynamics. Scatchard analysis shows that there are four types of binding sites in the polymer matrix, i.e., two types of high affinity binding sites toward two templates and two types of non-selective recognition sites. The relative distribution coefficient(k=Kd(RT)/Kd(QT), Kd=qe/ρe, Kd—distribution coefficient, qe—equilibrium adsorption amount, ρe—equilibrium mass concentration) much higher than 1.0 reveals a high selectivity for the MIPs toward rutin. The highest relative distribution coefficient(6.669) and separation factor(α=qe (RT)/qe(QT))(25.02) are obtained when the concentration of rutin and quercetin in the model mixture is 0.07 and 0.03 mmol/L, respectively. When using acetonitrile, methanol and methanol-acetic acid mixture as effluents in sequence in the MIPs solid phase extraction of crude extract of sophora flower bud, quercetin and rution can be separately extracted with 96.70% and 94.67% recoveries, respectively.

Key wordsmolecularly imprinted polymers    quercetin    rutin    mixed-templates imprinting    molecular recognition
收稿日期: 2015-04-23           接受日期: 2015-08-20
CLC:     
基金资助:国家自然科学基金面上项目(21077042)及湖南省高校科技创新团队支持计划“环境能源材料与武陵山区矿产资源精深加工”;吉首大学研究生专项(编号:37)
通讯作者: 李辉     E-mail: lihuijsdx@163.com
引用本文:   
王素素, 张月, 李辉, 许苗苗. 芦丁-槲皮素双模板印迹聚合物的制备、表征及识别[J]. 应用化学, 2015, 32(11): 1290-1298.
WAGN Susu, ZHANG Yue, LI Hui, XU Miaomiao. Preparation, Characterization and Recognition Behavior of Quercetin-Rutin Bi-template Molecularly Imprinted Polymers. Chinese Journal of Applied Chemistry, 2015, 32(11): 1290-1298.
链接本文:  
http://yyhx.ciac.jl.cn/CN/10.11944/j.issn.1000-0518.2015.11.150145      或      http://yyhx.ciac.jl.cn/CN/Y2015/V32/I11/1290
Scheme. 1Molecular structure of quercetin(a) and rutin (b)
Polymers Templates(amount/mmol) Amount of functional monomer/mmol Amount of cross-linker/mmol
MIP1 QT(0.05)+RT(0.05) 0.40 1.00
MIP2 QT(0.05)+RT(0.05) 0.40 1.50
MIP3 QT(0.05)+RT(0.05) 0.80 1.00
MIP4 QT(0.06) + RT(0.04) 0.40 1.00
MIP5 QT(0.06) + RT(0.04) 0.80 1.00
MIP6 QT(0.04) + RT(0.06) 0.80 1.00
MIP7 RT(0.10) 0.80 1.00
MIP8 QT(0.10) 0.80 1.00
NIP1 0 0.40 1.00
NIP2 0 0.40 1.50
NIP3 0 0.80 1.00
表1双模板分子印迹聚合物的制备
Table 1Preparation of Bi-templates imprinted polymers
图1槲皮素(A)及芦丁(B)在聚合物上的吸附量及标准偏差 (n=3)
Fig.1Adsorption capacity of quercetin(A) and rutin(B) on polymers and its standard deviation(n=3)
图2槲皮素、芦丁、分子印迹聚合物(MIP5)和及非印迹聚合物(NIP3)的红外光谱图
Fig.2FT-IR spectrum of quercetin, rutin, molecularly imprinted polymer(MIP5) and non-imprinted polymer(NIP3)
图3MIP5(A)和NIP3(B)的扫描电子显微镜照片
Fig.3SEM images of MIP5(A) and NIP3(B)
图4MIP5与NIP3对槲皮素(A)及芦丁(B)的吸附动力学
Fig.4Adsorption dynamics of quercetin(A) and rutin(B) on the MIP5 and NIP3
图5分子印迹聚合物(MIP5)分别对槲皮素(A)和芦丁(B)的吸附等温线及其Scatchard分析(插图)
Fig.5Adsorption isotherm(A,B) and its scatchard analysis(inset) for the MIP5 toward quercetin(A) and rutin(B)
Types of sites Fitting parameters Quercetin Rutin
High affinity sites Scatchard-fitting equations y=-0.0703x+5.53747,
R2=0.9198
y=-0.04453x+5.56558,
R2=0.9782
Dissociation constant, K1/(mg·L-1) 14.22 22.46
Maximum apparent binding constant,
Qmax1/(mg·g-1)
78.77 125.0
Low affinity sites Scatchard-fitting equations y=-0.00709x+1.19945,
R2=0.9931
y=-0.01187x+2.12347,
R2=0.9877
Dissociation constant, K2/(mg·L-1) 141.0 84.25
Maximum apparent binding constant,
Qmax2/(mg·g-1)
169.1 178.9
表2分子印迹聚合物(MIP5)吸附等温线的Scatchard分析及键合位点分布
Table 2Scatchard analysis of adsorption isotherm for the MIP5 and binding sites distribution
图6分子印迹聚合物(MIP5)对槲皮素-芦丁模拟混合溶液中化合物的吸附量
Fig.6Adsorption capacity of the MIP5 toward two compounds in quercetin-rutin model mixture solution
Composition of model mixture solution/
(mmol·L-1)
Kd/(mL·g-1) k α
QT RT
QT(0.03)+RT(0.07) 90.03 600.4 6.669 25.02
QT(0.05)+RT(0.05) 310.2 592.3 1.909 3.013
QT(0.07)+RT(0.03) 621.1 802.1 1.291 1.184
表3分子印迹聚合物MIP5对两种模板分子的分布系数、相对分布系数及分离因子
Table 3Distribution coefficients, relative distribution coefficients and separation factors for the MIP5 toward two templates in competitive adsorption test
Procedure MIPs NIPs
RT QT RT QT
Loading/mg 29.73 3.152 21.38 3.154
Washing with 3.0 mL of acetonitrile 1.432 0.050 3.998 0.492
Elution with 3.0 mL of methanol/mg 23.87 0.646 9.707 1.252
Elution with 3.0 mL methanol-acetic acid mixture(volume ratio, 9:1)/mg 3.449 2.288 8.087 1.363
Total recovery/% 96.70 94.67 101.9 98.51
表4装载和洗脱
Table 4Loading and elution for MIPs solid phase extraction
[1] Chen L X,Xu S F,Li J H. Recent Advances in Molecular Imprinting Technology:Current Status, Challenges and Highlighted Application[J]. Chem Soc Rev,2011,40(5):2922-2942.
[2] Song X L,Li J H,Wang J T,et al.Quercetin Molecularly Imprinted Polymers:Preparation, Recognition Characteristics and Properties as Sorbent for Solid-phase Extraction[J]. Talanta,2009,80(2):694-702
[3] LI Zhiping,LI Hui,LIU Fen,et al.Preparation, Characterization and Adsorption Behavior of Huperzine a Imprinted Polymers[J]. Chinese J Appl Chem,2013,30(8):915-921(in Chinese). 李志平,李辉,刘芬,等. 石杉碱甲印迹聚合物的制备、表征及其吸附性能[J]. 应用化学,2013,30(8):915-921.
[4] Aburto J,Borgne S L. Selective Adsorption of Dibenzothiophene Sulfone by an Imprinted and Stimuli Responsive Chitosan Hydrogen[J]. Macromolecules,2004,37(8):2938-2943.
[5] Cheng Z Y,Li Y Z. The Role of Molecular Recognition in Regulation the Catalytic Activity of Peroxidase-like Polymers Imprinted by a Reductant Substrate[J]. J Mol Catal A:Chem,2006,256(1/2):9-15.
[6] Huo P W,Lu Z Y,Wang H Q,et al.Enhanced Photodegradation of Antibiotics Solution under Visible Light with Fe2+/Fe3+ Immobilized on TiO2/flyash Cenospheres by Using Ions Imprinting Technology[J]. Chem Eng J,2011,172(2/3):615-622.
[7] Yin J F,Cui Y,Yang G L,et al.Molecularly Imprinted Nanotubes for Enantioselective Drug Delivery and Controlled Release[J]. Chem Commun,2010,46(41):7688-7690.
[8] Aghaei A,Milani H M R,Najafi M. A Novel Capacitive Biosensor for cholesterol Assay That Uses an Electropolymerized Molecularly Imprinted Polymer[J]. Electrochim Acta,2010,55(5):1503-1508.
[9] Michailof C,Manesiotis P,Panayiotou C. Synthesis of Caffeic Acid and p-Hydroxybenzoic Acid Molecularly Imprinted Polymers and Their Application for the Selective Extraction of Polyphenols from Olive Mill Waste Waters[J]. J Chromatogr A,2008,1182:25-33.
[10] Cummins W,Duggan P,McLoughlin P. Systematic Cross-selectivity Study of the Factors Influencing Template Receptor Interactions in Molecularly Imprinted Nitrogen Heterocycles[J]. Biosens Bioelectron,2006,22:372-380.
[11] Russo N,Toscano M,Uccella N. Semiempirical Molecular Modeling into Quercetin Reactive Sites: Structural, Conformational, and Electronic Features[J]. J Agric Food Chem,2000,48(8):3232-3237.
[12] Krisetherton P M. Monounsaturated Fatty Acids and Risk of Cardiovascular Disease[J]. Circulation,1999,100:1253-1258.
[13] FAN Peimin,WANG Bing. Preparation of Quercetin's Metal-complexing Imprinted Polymer Membrane and Its Properties[J]. Acta Chim Sin,2010,68(24):2543-2550(in Chinese). 范培民 王兵. 槲皮素金属配位印迹聚合物膜的制备及性能研究[J]. 化学学报,2010,68(24):2543-2550.
[14] WANG Zhihua,KANG Jingwan,ZHANG Huini,et al.Studies on the Permeation Characteristics of Molecularly Imprinted Polymer Membranes with Zinc(Ⅱ)-quercetin Complex as Template[J]. Acta Chim Sin,2007,65(18):2019-2024(in Chinese). 王志华,康敬万,张会妮,等. 锌-槲皮素配位分子印迹聚合物膜渗透特性的研究[J]. 化学学报,2007,65(18):2019-2024.
[15] GONG Shengzhao,HE Yuanlun. Research of Rutin Extraction from Scholartree Flower Bud[J]. China Resour Compr Util,2003,(1):22-24(in Chinese). 龚盛昭,何远伦. 从槐米中提取芦丁的研究[J]. 中国资源综合利用,2003,(1):22-24.
[16] Matsui J,Miyoshi Y,Doblhoff-Dier O,et al.A Molecularly Imprinted Synthetic Polymer Receptor Selective for Atrazine[J]. Anal Chem,1995,67(23):4404-4408.
[17] Ramstrom O,Anderson I,Mosbach K. Recognition Sites Incorporating Both Pyridinyl and Carboxy Functionalities Prepared by Molecular Imprinting[J]. J Org Chem,1993,58(26):7562-7564.
[1] 吴迎春, 聂峰, 唐志华, 刘东强. 甲醛分子印迹聚合物的制备、性能及水产品测定[J]. 应用化学, 2015, 32(1): 104-109.
[2] 曹林交 高保娇* 胡伟民. 生物碱分子表面印迹聚合物材料的设计与制备及其分子识别特性[J]. 应用化学, 2014, 31(12): 1390-1398.
[3] 克帕亚木·买买提 吐尔洪·买买提* 尤努斯江·吐拉洪 布热比亚·亚合普. 对硝基苯酚分子印迹聚合物最佳功能单体的筛选及其水样固相萃取中的应用[J]. 应用化学, 2014, 31(04): 482-488.
[4] 庹苏行* 吴名剑 戴云辉. 分子印迹聚合物选择性降低烟气中稠环芳烃类物质[J]. 应用化学, 2014, 31(01): 89-95.
[5] 吴云霞1,2 黄静1,2 尹争志2 曾延波2 张祖磊2 李蕾2*. 悬浮聚合法制备罗丹明B磁性分子印迹微球及其性能[J]. 应用化学, 2013, 30(12): 1481-1488.
[6] 李志平1,2 李辉2,3* 刘芬2 逯翠梅2. 石杉碱甲分子印迹聚合物的制备、表征及其吸附性能[J]. 应用化学, 2013, 30(08): 915-921.
[7] 吴泉书 黄志勇* 林郑忠. 孔雀石绿分子印迹聚合物的制备及其吸附[J]. 应用化学, 2013, 30(07): 834-839.
[8] 方奕珊 李来生* 陈红 张杨. 高效液相色谱槲皮素键合硅胶固定相分离极性化合物[J]. 应用化学, 2013, 30(01): 79-87.
[9] 侯长军1* 张玉婵1 黄舜1 刘振1 沈才洪2 张宿义2 霍丹群1. 卟啉及其衍生物对生物分子的识别研究进展[J]. 应用化学, 2011, 28(09): 977-985.
[10] 雷秀兰1,2 易翔1,2 袁洋1,2 曾延波1 李蕾1*. 罗丹明B分子印迹聚合物微球的合成及其在固相萃取中的应用[J]. 应用化学, 2011, 28(05): 531-536.
[11] 吴粦华* 拓宏桂 钟春龙. 2-羟基-1-萘甲醛缩-2-萘甲酰腙对Zn2+的选择性识别[J]. 应用化学, 2010, 27(06): 632-636.
[12] 许志锋*,吴双,吴小辉,邝代治,张复兴,王剑秋. 二茂铁甲酸分子印迹聚合物的制备和识别机理、结合特性[J]. 应用化学, 2010, 27(04): 384-389.
[13] 李丽丽1,周文辉2,3,李永2,林黎明4,朱校斌1,杨黄浩3*,王小如2,3. 软骨藻酸分子印迹聚合物的制备及其固相萃取应用[J]. 应用化学, 2010, 27(02): 132-136.
[14] 辉永庆. 铅分子印迹聚合物合成及在痕量测量中的应用[J]. 应用化学, 2009, 26(6): 721-725.
[15] 石燕;刘绍璞;刘忠芳;李念兵. 山楂果和桑枝提取物中总黄酮含量的Fe(phen)2+3探针共振瑞利散射法测定[J]. 应用化学, 2009, 26(4): 0-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
 Chinese Journal of Applied Chemistry
地址:长春市人民大街5625号 邮编:130022
电话:0431-85262016 85262330 传真:0431-85685653 E-mail: yyhx@ciac.ac.cn