[1] Doeff M M,Ma Y P,Visco S J,et al. Electrochemical Insertion of Sodium into Carbon[J]. J Electrochem Soc,1993,140(12):L169-L170.[2] Cao Y L,Xiao L F,Wang W,et al. Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life[J]. Adv Mater,2011,23(28):3155-3160.[3] Yamada Y,Doi T,Tanaka I,et al. Liquid-Phase Synthesis of Highly Dispersed NaFeF3 Particles and Their Electrochemical Properties for Sodium-ion Batteries[J]. J Power Sources,2011,196(10):4837-4841.[4] Liu H M,Zhou H S,Chen L P,et al. Electrochemical Insertion/Deinsertion of Sodium on NaV6O15 Nanorods as Cathode Material of Rechargeable Sodium-based Batteries[J]. J Power Sources,2011,196(2):814-819.[5] Kim D,Kang S H,Slater M,et al. Enabling Sodium Batteries Using Lithium-substituted Sodium Layered Transition Metal Oxide Cathodes[J]. Adv Energy Mater,2011,1(3):333-336.[6] Chevrier V L,Ceder G. Challenges for Na-ion Negative Electrodes[J]. J Electrochem Soc,2011,158(9):A1011-A1014.[7] Ong S P,Chevrier V L,Hautier G,et al. Voltage, Stability and Diffusion Barrier Differences Between Sodium-ion and Lithium-ion Intercalation Materials[J]. Energy Environ Sci,2011,4(8):3680-3688.[8] Senguttuvan P,Rousse G,Seznec V,et al. Na2Ti3O7:Lowest Voltage Ever Reported Oxide Insertion Electrode for Sodium Ion Batteries[J]. Chem Mater,2011,23(18):4109-4111.[9] Wenzel S,Hara T,Janek J,et al. Room-temperature Sodium-ion Batteries:Improving the Rate Capability of Carbon Anode Materials by Templating Strategies[J]. Energy Environ Sci,2011,4(9):3342-3345.[10] Alcantara R,Jimenez J M,Tirado J L. Negative Electrodes for Lithium- and Sodium-ion Batteries Obtained by Heat-treatment of Petroleum Cokes Below 1000 ℃[J]. J Electrochem Soc,2002,149(2):A201-A205.[11] Stevens D A,Dahn J R. High Capacity Anode Materials for Rechargeable Sodium-ion Batteries[J]. J Electrochem Soc,2000,147(4):1271-1273.[12] Yin J,Qi L,Wang H Y. Sodium Titanate Nanotubes as Negative Electrode Materials for Sodium-Ion Capacitors[J]. ACS Appl Mater Interfaces,2012,4(5):2762-2768.[13] Kihlborg L,Ark K. Least-squares Refinement of the Crystal Structure of Mo Trioxide[J]. J Power Sources,1963,21:357-364.[14] West W C,Whitacre J F. Long Cycle Life Elevated Temperature Thin-film Batteries Incorporating MoO3 Cathodes[J]. J Electrochem Soc,2005,152(5):A966-A969.[15] Wiecek B,Twardoch U. Electrochemical Study of Molybdenum Oxide Film Electrodes[J]. J Phys Chem Solids,2004,65(2/3):263-268.[16] Spahr M E,Novak P,Hass O,et al. Electrochemical Insertion of Lithium, Sodium, and Magnesium in Molybdenum(Ⅵ) Oxide[J]. J Power Sources,1995,54(2):346-351.[17] Komaba S,Kumagai N,Kumagai R,et al. Molybdenum Oxides Synthesized by Hydrothermal Treatment of A2MoO4(A=Li,Na,K) and Electrochemical Lithium Intercalation into the Oxides[J]. Solid State Ionics,2002,152/153(12):319-326.[18] Besenhard J O,Heydecke J,Wudy E,et al.Characteristics of Molybdenum Oxide and Chromium Oxide Cathodes in Primary and Secondary Organic Electrolyte Lithium Batteries:Part Ⅱ.Transport Properties[J]. Solid State Ionics,1983,8(1):61-65.[19] Julien C,Nazri G A,Guesdon J P,et al. Influence of the Growth Conditions on Electrochemical Features of MoO3 Film-cathodes in Lithium Microbatteries[J]. Solid State Ionics,1994,73(3/4):319-326. |