应用化学 ›› 2018, Vol. 35 ›› Issue (12): 1507-1513.DOI: 10.11944/j.issn.1000-0518.2018.12.180020

• 研究论文 • 上一篇    下一篇

稻壳基活性炭对锰酸锂电池倍率性能的影响

宋雪丽a,张建会a*(),陆海彦b,包金鹏b,田永霞a,林海波b   

  1. a吉林大学珠海学院 广东 珠海 519041
    b吉林大学化学学院 长春 130012
  • 收稿日期:2018-01-22 接受日期:2018-05-14 出版日期:2018-12-05 发布日期:2018-12-10
  • 通讯作者: 张建会
  • 基金资助:
    国家自然科学基金(21573093)项目资助

Effect of Activated Carbon from Rice Husk on the Rate Performance of Lithium Manganese Oxide Battery

SONG Xuelia,ZHANG Jianhuia*(),LU Haiyanb,BAO Jinpengb,TIAN Yongxiaa,LIN Haibob   

  1. aZhuhai College of Jilin University,Zhuhai,Guangdong 519041,China
    bCollege of Chemistry,Jilin University,Changchun 130012,China
  • Received:2018-01-22 Accepted:2018-05-14 Published:2018-12-05 Online:2018-12-10
  • Contact: ZHANG Jianhui
  • Supported by:
    Supported by the National Natural Science Foundation of China(No.21573093)

摘要:

稻壳基活性炭(RH-AC)具有天然的多级孔道结构,是由稻壳碳化和活化两步得到的。 用RH-AC和锰酸锂(LMO)混合制备复合电极,以锂片为对电极,组装半电池进行恒流充放电测试。 实验发现:含有质量分数为5%的RH-AC与90.5%的LMO的复合电极(RH-AC5)在5C电流密度循环100圈后比容量为89.3 mA·h/g,容量保持率高于89%,远优于纯锰酸锂电极。 采用循环伏安法计算出的锂离子扩散系数,及利用交流阻抗测试拟合后得到的结果进一步验证了该结论。

关键词: 锰酸锂, 活性炭, 倍率性能, 扩散系数

Abstract:

Rice husk activated carbon(RH-AC) was synthesized via facile carbonization and activation basing on previous work. Lithium Manganese Oxide(LMO) and RH-AC were used to prepare composite electrode. Lithium metal was used as the counter electrode. Composite electrode and pure LMO electrode were tested via the galvanostatic charge/discharge(GCD). The results show that the specific capacity of 89.3 mA·h/g at 5 C rate, and the capacity retention of 89% after 100 cycles are obtained for the composite electrode with addition 5% mass fraction of RH-AC(RH-AC5). Obviously, the composite electrode exhibits higher specific capacity with better rate capability and cycle stability than those of LMO electrode. This result was further verified by the impedance simulation result and the lithium ion diffusion coefficients obtained by the cyclic voltammetric method for LMO electrode and RH-AC5 electrode.

Key words: lithium manganese oxide, activated carbon, rate capability, diffusion coefficients