应用化学 ›› 2026, Vol. 43 ›› Issue (1): 15-30.DOI: 10.19894/j.issn.1000-0518.250389
李昌伦1, 杨丽娣1, 杨哲林1, 丁南2(
), 原建光2, 尹东明2, KHARYTONCHYK-Sergei3, 程勇2
收稿日期:2025-10-10
接受日期:2025-11-20
出版日期:2026-01-01
发布日期:2026-01-26
通讯作者:
丁南
基金资助:
Chang-Lun LI1, Li-Di YANG1, Zhe-Lin YANG1, Nan DING2(
), Jian-Guang YUAN2, Dong-Ming YIN2, KHARYTONCHYK-Sergei3, Yong CHENG2
Received:2025-10-10
Accepted:2025-11-20
Published:2026-01-01
Online:2026-01-26
Contact:
Nan DING
About author:dingnan@ciac.ac.cnSupported by:摘要:
目前的储氢技术主要采用高压气态储氢、低温液态储氢和固态储氢等方式。 与固态的煤或液态的石油相比,气态氢在储存与运输过程中面临诸多挑战,尤其是其体积能量密度较低,严重制约了氢气的应用。 利用金属氢化物将氢气固化为固态氢化物形式,可有效缓解氢在储运中的高效及安全性等难题。 当前,尽管固态合金储氢技术在氢气存储等领域已经获得应用,但仍存在诸多有待拓展的方向。 金属氢化物的吸放氢过程涵盖了动量、质量与热量传递等方面,是一个涉及多物理场耦合的复杂传输过程。 该技术不仅依赖于储氢材料本身具备优异性能,还很大程度上取决于反应床结构的设计。 作为储氢材料进行吸放氢的核心场所,反应床直接影响材料的实际储氢表现,因而是保障储氢材料充分发挥其性能的关键,具有不可替代的作用。 本文从传热传质机理、强化传热传质方法与结构优化等方面综述了近年来关于储氢合金反应床的研究现状,相关研究成果为储氢材料的实际应用推广提供了理论依据与技术支撑,对推动氢能产业链的可持续发展具有重要意义。
中图分类号:
李昌伦, 杨丽娣, 杨哲林, 丁南, 原建光, 尹东明, KHARYTONCHYK-Sergei, 程勇. 固态储氢反应床的性能优化与设计研究进展[J]. 应用化学, 2026, 43(1): 15-30.
Chang-Lun LI, Li-Di YANG, Zhe-Lin YANG, Nan DING, Jian-Guang YUAN, Dong-Ming YIN, KHARYTONCHYK-Sergei, Yong CHENG. Advances in Performance Optimization and Design of Solid-State Hydrogen Storage Reaction Beds[J]. Chinese Journal of Applied Chemistry, 2026, 43(1): 15-30.
图1 (A)开孔铝泡沫; (B、C)开孔金属泡沫典型孔隙结构; (D)韧带截面; (E)孔径对储氢量的影响[33]
Fig.1 (A) Open-cell aluminum foams; (B, C) Typical pore structure of open-cell metal foam; (D) Ligament cross sections, taken from; (E) Effect of pore size on hydrogen storage capacity[33]
图2 (A) PMH反应器的俯视图; (B)金属氢化物反应器模块与3个反应器并联示意图; (C)热力学效率变化[38]
Fig.2 (A) A top view of a PMH reactor; (B) Schematic view of the metal hydride reactor module-3 reactors in parallel; (C) Thermodynamic efficiency variations[38]
图3 (A)再压缩膨胀石墨技术(REGT)示意图和(B)膨胀石墨的扫描电子显微镜照片[44]
Fig.3 (A) Schematic of recompressed expanded graphite technique (REGT) and (B) SEM photograph of the expanded graphite[44]
图5 MH-TCM存储系统2种配置示意图: (A) TCM环绕式布局的俯视图; (B) MH-TCM夹层系统俯视图; (C) TCM环绕式布局的轴向视图; (D) MH-TCM夹层系统的轴向视图[56]
Fig.5 Schematics of two configurations of MH-TCM storage system: (A) Top view of the TCM surrounding layout; (B) Top view of the MH-TCM sandwich system; (C) Axial view of the TCM surrounding layout; (D) Axial view of the MH-TCM sandwich system[56]
图9 (A)带有铜片的U型管换热器和(B)存储设备组件照片[78]
Fig.9 Photograph of (A) U-tube heat exchanger assembly with copper flakes and (B) assembly of the storage device[78]
图10 板式换热器: (A)带连接和绝缘的转换状态; (B)未填充截面图[85]
Fig.10 Soldered plate reactor: (A) Converted state with connections and insulation; (B) Unfilled cross-sectional view[85]
| [1] | ABA M M, SAUER I L, AMADO N B. Comparative review of hydrogen and electricity as energy carriers for the energy transition[J]. Int J Hydrogen Energy, 2024, 57: 660-678. |
| [2] | BASHIR M F, PATA U K, SHAHZAD L. Linking climate change, energy transition and renewable rnergy investments to combat energy security risks: evidence from top energy consuming economies[J]. Energy, 2025, 314: 134175. |
| [3] | LUDERER G, PIETZCKER R C, CARRARA S, et al. Assessment of wind and solar power in global low-carbon energy scenarios: an introduction[J]. Energy Econ, 2017, 64: 542-551. |
| [4] | PASKEVICIUS M, SHEPPARD D A, WILLIAMSON K, et al. Metal hydride thermal heat storage prototype for concentrating solar thermal power[J]. Energy, 2015, 88: 469-477. |
| [5] | SEMELSBERGER T A, BROOKS K P. Chemical hydrogen storage material property guidelines for automotive applications[J]. J Power Sources, 2015, 279: 593-609. |
| [6] | ABE J O, POPOOLA A P I, AJENIFUJA E, et al. Hydrogen energy, economy and storage: review and recommendation[J]. Int J Hydrogen Energy, 2019, 44: 15072-15086. |
| [7] | KOUROUGIANNI F, ARSALIS A V, OLYMPIOS A, et al. A comprehensive review of green hydrogen energy systems[J]. Renew Energy, 2024, 231: 120911. |
| [8] | LIU H, XU L, HAN Y, et al. Development of a gaseous and solid-state hybrid system for stationary hydrogen energy storage[J]. Green Energy Environ, 2021, 6: 528-537. |
| [9] | LIANG C, WANG Z, ZHANG M, et al. Research progress on magnesium-based solid hydrogen storage nanomaterials[J]. Energy Storage Sci Technol, 2024, 13: 788-824. |
| [10] | 周树辉, 王秀林, 段品佳, 等. 高压气态储氢技术形势分析[J]. 储能科学与技术, 2023, 12(8): 2668-2679. |
| ZHOU S H, WANG X L, DUAN P J, et al. Analysis of high-pressure gaseous hydrogen storage technology[J]. Energy Storage Sci Technol, 2023, 12(8): 2668-2679. | |
| [11] | ZHANG J, LUO X. Development status and prospect of key technologies for liquid hydrogen production-storage-transportation-refueling[J]. Power Gener Technol, 2024, 45: 888-898. |
| [12] | 张晓飞, 蒋利军, 叶建华, 等. 固态储氢技术的研究进展[J]. 太阳能学报, 2022, 43: 345-354. |
| ZHANG X F, JIANG L J, YE J H, et al. Research progress of solid-state hydrogen storage teachnology[J]. Acta Energy Sol Sin, 2022, 43: 345-354. | |
| [13] | 米菁. 高效高安全固态储氢技术研究进展[C]. 昆明: 中国稀土学会第五届青年学术会议, 2024: 285. |
| MI J. Research progress on high-efficiency and high-safety solid-state hydrogen storage technology[C]. Kunming: The fifth youth academic conference of the chinese society of rare earths, 2024: 285. | |
| [14] | SAMANTARAY S S, PUTNAM S T, STADIE N P. Volumetrics of hydrogen storage by physical adsorption[J]. Inorganics, 2021, 9(6): 45. |
| [15] | WEN Y, CHAI X, GU Y, et al. Advances in hydrogen storage materials for physical H2 adsorption[J]. Int J Hydrogen Energy, 2025, 97: 1261-1274. |
| [16] | 吴朝玲, 张昱晨, 杜瑞, 等. 氢储运技术的发展现状、挑战及未来方向[J]. 前瞻科技, 2024, 3: 22-33. |
| WU C L, ZHANG Y C, DU R, et al. Current state, challenges, and development directions of hydrogen storage and transportation technologies[J]. Sci Technol Foresight, 2024, 3: 22-33. | |
| [17] | 程涛, 杨雪, 林伟. 基于金属氢化物储氢的热管理技术研究进展[J]. 石油炼制与化工, 2023, 54(9): 8-17. |
| CHENG T, YANG X, LIN W. Progress in thermal management technology for hydrogen storage based on metal hydride[J]. Pet Process Petrochem, 2023, 54(9): 8-17. | |
| [18] | 陈贤志, 王苗佳, 王为术, 等. 固态储氢换热装置储放氢性能影响研究[J]. 能源与环保, 2024, 46(11): 122-128. |
| CHEN X Z, WANG M J, WANG W S, et al. Study on influence of hydrogen storage and release performance of solid hydrogen storage and heat exchange device[J]. China Energy Environ Prot, 2024, 46(11): 122-128. | |
| [19] | 张鑫安. 动态反应床内合金吸氢热质传递过程及床体应变积聚特性研究[D]. 济南: 山东大学, 2024. |
| ZHANG X A. Hydrogen-absorbing thermal mass transfer process of alloys in dynamic reactors and characterization of bedstrain accumulation[D]. Jinan: Shandong University, 2024. | |
| [20] | 吴浩然. 储氢合金反应床吸/放氢应力积聚特性与缓解优化研究[D]. 济南: 山东大学, 2023. |
| WU H R. Study on stress accumulation and weakening of metal hydride reactor during hydrogen absorption/desorption[D]. Jinan: Shandong University, 2023. | |
| [21] | 刘晓杰, 刘峻, 韩文杰, 等. 储氢技术研究进展及挑战与机遇[J]. 现代化工, 2025, 45(8): 79-84. |
| LIU X J, LIU J, HAN W J, et al. An overview of hydrogen storage technologies: research progress, challenges, and opportunities[J]. Modern Chem Ind, 2025, 45(8): 79-84. | |
| [22] | LOTOTSKYY M V, TOLJ I, PARSONS A, et al. Performance of electric forklift with low-temperature polymer exchange membrane fuel cell power module and metal hydride hydrogen storage extension tank[J]. J Power Sources, 2016, 316: 239-250. |
| [23] | ZHAO W, YANG Y, BAO Z, et al. Methods for measuring the effective thermal conductivity of metal hydride beds: a review[J]. Int J Hydrogen Energy, 2020, 45: 6680-6700. |
| [24] | LI D, WANG Y, WU L, et al. Kinetics study on the nonlinear modified varying-size model of LaNi5 during hydrogenation/dehydrogenation[J]. Chem Eng Sci, 2020, 214: 115439. |
| [25] | YANG Y, MOU X, ZHU Z, et al. Measurement and analysis of effective thermal conductivity of LaNi5 and its hydride under different gas atmospheres[J]. Int J Hydrogen Energy, 2021, 46: 19467-19477. |
| [26] | KHRAISHA Y H. Thermal conductivity of oil shale particles in a packed bed[J]. Energy Sources, 2002, 24: 613-623. |
| [27] | KIM D M, KIM J B, LEE J, et al. Measurement of effective thermal conductivity of LaNi5 powder packed bed[J]. Int J Heat Mass Transfer, 2021, 165: 120735. |
| [28] | MOU X, ZHOU W, BAO Z, et al. Measurement and theoretical analysis of effective thermal conductivity of lanthanum pentanickel powder beds for hydrogen storage in different particle sizes and bed porosities[J]. J Cleaner Prod, 2024, 468: 143098. |
| [29] | DARZI A A R, AFROUZI H H, MOSHFEGH A, et al. Absorption and desorption of hydrogen in long metal hydride tank equipped with phase change material jacket[J]. Int J Hydrogen Energy, 2016, 41: 9595-9610. |
| [30] | EL MGHARI H, HUOT J, TONG L, et al. Selection of phase change materials, metal foams and geometries for improving metal hydride performance[J]. Int J Hydrogen Energy, 2020, 45: 14922-14939. |
| [31] | LÉVESQUE S, CIUREANU M, ROBERGE R, et al. Hydrogen storage for fuel cell systems with stationary applications-I. transient measurement technique for packed bed evaluation[J]. Int J Hydrogen Energy, 2000, 25: 1095-1105. |
| [32] | LAURENCELLE F, GOYETTE J. Simulation of heat transfer in a metal hydride reactor with aluminium foam[J]. Int J Hydrogen Energy, 2007, 32: 2957-2964. |
| [33] | MELLOULI S, DHAOU H, ASKRI F, et al. Hydrogen storage in metal hydride tanks equipped with metal foam heat exchanger[J]. Int J Hydrogen Energy, 2009, 34: 9393-9401. |
| [34] | FEREKH S, GWAK G, KYOUNG S, et al. Numerical comparison of heat-fin and metal-foam-based hydrogen storage beds during hydrogen charging process[J]. Int J Hydrogen Energy, 2015, 40: 14540-14550. |
| [35] | BERSHADSKY E, JOSEPHY Y, RON M. Permeability and thermal conductivity of porous metallic matrix hydride compacts[J]. J Less Common Met, 1989, 153: 65-78. |
| [36] | ROMANOV I A, BORZENKO V I, KAZAKOV A N. Influence of high thermal conductivity addition on PCT-isotherms of hydrogen storage alloy[J]. J Phys Conf Ser, 2018, 1128: 012105. |
| [37] | KIM K J, FELDMAN K T, LLOYD G, et al. Performance of high power metal hydride reactors[J]. Int J Hydrogen Energy, 1998, 23: 355-362. |
| [38] | KIM J K, PARK I S, KIM K J, et al. A hydrogen-compression system using porous metal hydride pellets of LaNi5- xAlx[J]. Int J Hydrogen Energy, 2008, 33: 870-877. |
| [39] | ZHU Z, BAO Z, WU D. Optimization of the content distribution of expanded natural graphite in a multilayer metal hydride bed for thermochemical heat storage[J]. Appl Therm Eng, 2022, 216: 119115. |
| [40] | PARK C S, JUNG K, JEONG S U, et al. Development of hydrogen storage reactor using composite of metal hydride materials with ENG[J]. Int J Hydrogen Energy, 2020, 45: 27434-27442. |
| [41] | KIM D M, HAN D J, HEO T W, et al. Enhancement of effective thermal conductivity of RGO/Mg nanocomposite packed beds[J]. Int J Heat Mass Transfer, 2022, 192: 122891. |
| [42] | MEETHOM S, KAEWSUWAN D, CHANLEK N, et al. Enhanced hydrogen sorption of LiBH4-LiAlH4 by quenching dehydrogenation, ball milling, and doping with MWCNTs[J]. J Phys Chem Solids, 2020, 136: 109202. |
| [43] | ATALMIS G, TOROS S, TIMURKUTLUK B, et al. Effect of expanded natural graphite addition and copper coating on reaction kinetics and hydrogen storage characteristics of metal hydride reactors[J]. Int J Hydrogen Energy, 2024, 53: 647-656. |
| [44] | KIM K J, MONTOYA B, RAZANI A, et al. Metal hydride compacts of improved thermal conductivity[J]. Int J Hydrogen Energy, 2001, 26: 609-613. |
| [45] | SÁNCHEZ A R, KLEIN H P, GROLL M. Expanded graphite as heat transfer matrix in metal hydride beds[J]. Int J Hydrogen Energy, 2003, 28: 515-527. |
| [46] | POURPOINT T L, SISTO A, SMITH K C, et al. Performance of thermal enhancement materials in high pressure metal hydride storage systems[C]. ASME Heat Transfer Summer Conference. Jacksonville, Florida, USA. 2008: 37-46. |
| [47] | INOUE S, IBA Y, MATSUMURA Y. Drastic enhancement of effective thermal conductivity of a metal hydride packed bed by direct synthesis of single-walled carbon nanotubes[J]. Int J Hydrogen Energy, 2012, 37: 1836-1841. |
| [48] | POPILEVSKY L, SKRIPNYUK V M, AMOUYAL Y, et al. Tuning the thermal conductivity of hydrogenated porous magnesium hydride composites with the aid of carbonaceous additives[J]. Int J Hydrogen Energy, 2017, 42: 22395-22405. |
| [49] | BAE S C, TANAE T, MONDE M, et al. Heat transfer enhancement of metal hydride particle bed for heat driven type refrigerator by carbon fiber[J]. J Therm Sci Technol, 2008, 3: 2-10. |
| [50] | FUJIOKA K, HATANAKA K, HIRATA Y. Composite reactants of calcium chloride combined with functional carbon materials for chemical heat pumps[J]. Appl Therm Eng, 2008, 28: 304-310. |
| [51] | YASUDA N, TSUCHIYA T, OKINAKA N, et al. Thermal conductivity and cycle characteristic of metal hydride sheet formed using aramid pulp and carbon fiber[J]. Int J Hydrogen Energy, 2013, 38: 1657-1661. |
| [52] | CHAISE A, DE RANGO P, MARTY P, et al. Enhancement of hydrogen sorption in magnesium hydride using expanded natural graphite[J]. Int J Hydrogen Energy, 2009, 34: 8589-8596. |
| [53] | YANG F S, WANG G X, ZHANG Z X, et al. Investigation on the influences of heat transfer enhancement measures in a thermally driven metal hydride heat pump[J]. Int J Hydrogen Energy, 2010, 35: 9725-9735. |
| [54] | DEHOUCHE Z, GRIMARD N, LAURENCELLE F, et al. Hydride alloys properties investigations for hydrogen sorption compressor[J]. J Alloy Compd, 2005, 399: 224-236. |
| [55] | YANG Y, VOSKUILEN T G, POURPOINT T L, et al. Determination of the thermal transport properties of ammonia borane and its thermolysis product (polyiminoborane) using the transient plane source technique[J]. Int J Hydrogen Energy, 2012, 37: 5128-5136. |
| [56] | CHANG H, TAO Y B, YE H. Numerical study on hydrogen and thermal storage performance of a sandwich reaction bed filled with metal hydride and thermochemical material[J]. Int J Hydrogen Energy, 2023, 48: 20006-20019. |
| [57] | NISHIZAKI T, MIYAMOTO K, YOSHIDA K. Coefficients of performance of hydride heat pumps[J]. J Less Common Met, 1983, 89: 559-566. |
| [58] | GUO Z. Enhancement of heat and mass transfer in metal hydride beds with the addition of Al plates[J]. Heat Mass Transfer, 1999, 34: 517-523. |
| [59] | OI T, MAKI K, SAKAKI Y. Heat transfer characteristics of the metal hydride vessel based on the plate-fin type heat exchanger[J]. J Power Sources, 2004, 125: 52-61. |
| [60] | ASKRI F, SALAH M B, JEMNI A, et al. Optimization of hydrogen storage in metal-hydride tanks[J]. Int J Hydrogen Energy, 2009, 34: 897-905. |
| [61] | BOTZUNG M, CHAUDOURNE S, GILLIA O, et al. Simulation and experimental validation of a hydrogen storage tank with metal hydrides[J]. Int J Hydrogen Energy, 2008, 33: 98-104. |
| [62] | SREERAJ R, AADHITHIYAN A K, ANBARASU S. Integration of thermal augmentation methods in hydride beds for metal hydride based hydrogen storage systems: review and recommendation[J]. J Energy Storage, 2022, 52: 105039. |
| [63] | MACDONALD B D, ROWE A M. Impacts of external heat transfer enhancements on metal hydride storage tanks[J]. Int J Hydrogen Energy, 2006, 31: 1721-1731. |
| [64] | GARRISON S L, HARDY B J, GORBOUNOV M B, et al. Optimization of internal heat exchangers for hydrogen storage tanks utilizing metal hydrides[J]. Int J Hydrogen Energy, 2012, 37: 2850-2861. |
| [65] | NYAMSI S N, YANG F, ZHANG Z. An optimization study on the finned tube heat exchanger used in hydride hydrogen storage system-analytical method and numerical simulation[J]. Int J Hydrogen Energy, 2012, 37: 16078-16092. |
| [66] | KUKKAPALLI V K, KIM S W. Metal hydride reactor design optimization for hydrogen energyy storage[J]. Key Eng Mater, 2016, 708: 85-93. |
| [67] | CHANDRA S, SHARMA P, MUTHUKUMAR P, et al. Modeling and numerical simulation of a 5 kg LaNi5-based hydrogen storage reactor with internal conical fins[J]. Int J Hydrogen Energy, 2020, 45: 8794-8809. |
| [68] | WANG H, YI G, YE J, et al. Intensification of hydrogen absorption process in metal hydride devices with novel corrugated fins: a validated numerical study[J]. J Alloy Compd, 2022, 926: 166759. |
| [69] | VISARIA M, MUDAWAR I, POURPOINT T. Enhanced heat exchanger design for hydrogen storage using high-pressure metal hydride: part 1. design methodology and computational results[J]. Int J Heat Mass Tran, 2011, 54: 413-423. |
| [70] | VISARIA M, MUDAWAR I, POURPOINT T. Enhanced heat exchanger design for hydrogen storage using high-pressure metal hydride-part 2. experimental results[J]. Int J Heat Mass Tran, 2011, 54: 424-432. |
| [71] | MELNICHUK M, ANDREASEN G, CORSO H L, et al. Study and characterization of a metal hydride container[J]. Int J Hydrogen Energy, 2008, 33: 3571-3575. |
| [72] | FØRDE T, NÆSS E, YARTYS V A. Modelling and experimental results of heat transfer in a metal hydride store during hydrogen charge and discharge[J]. Int J Hydrogen Energy, 2009, 34: 5121-5130. |
| [73] | MOHAN G, MAIYA M P, MURTHY S S. Performance simulation of metal hydride hydrogen storage device with embedded filters and heat exchanger tubes[J]. Int J Hydrogen Energy, 2007, 32(18): 4978-4987. |
| [74] | ANBARASU S, MUTHUKUMAR P, MISHRA S C. Thermal modeling of LmNi4.91Sn0.15 based solid state hydrogen storage device with embedded cooling tubes[J]. Int J Hydrogen Energy, 2014, 39: 15549-15562. |
| [75] | MUTHUKUMAR P, SINGHAL A, BANSAL G K. Thermal modeling and performance analysis of industrial-scale metal hydride based hydrogen storage container[J]. Int J Hydrogen Energy, 2012, 37: 14351-14364. |
| [76] | JANA S, MUTHUKUMAR P. Design and performance prediction of a compact MmNi4.6Al0.4 based hydrogen storage system[J]. J Energy Storage, 2021, 39: 102612. |
| [77] | TANGE M, MAEDA T, NAKANO A, et al. Experimental study of hydrogen storage with reaction heat recovery using metal hydride in a totalized hydrogen energyy utilization system[J]. Int J Hydrogen Energy, 2011, 36: 11767-11776. |
| [78] | SINGH A, MAIYA M P, MURTHY S S. Experiments on solid state hydrogen storage device with a finned tube heat exchanger[J]. Int J Hydrogen Energy, 2017, 42: 15226-15235. |
| [79] | DHAOU H, KHEDHER N B, MELLOULI S, et al. Improvement of thermal performance of spiral heat exchanger on hydrogen storage by adding copper fins[J]. Int J Therm Sci, 2011, 50: 2536-2542. |
| [80] | DHAOU H, SOUAHLIA A, MELLOULI S, et al. Experimental study of a metal hydride vessel based on a finned spiral heat exchanger[J]. Int J Hydrogen Energy, 2010, 35: 1674-1680. |
| [81] | SOUAHLIA A, DHAOU H, ASKRI F, et al. Experimental and comparative study of metal hydride hydrogen tanks[J]. Int J Hydrogen Energy, 2011, 36: 12918-12922. |
| [82] | TONG L, XIAO J, YANG T, et al. Complete and reduced models for metal hydride reactor with coiled-tube heat exchanger[J]. Int J Hydrogen Energy, 2019, 44: 15907-15916. |
| [83] | BHOURI M, GOYETTE J, HARDY B J, et al. Honeycomb metallic structure for improving heat exchange in hydrogen storage system[J]. Int J Hydrogen Energy, 2011, 36: 6723-6738. |
| [84] | AFZAL M, SHARMA N, GUPTA N, et al. Transient simulation studies on a metal hydride based hydrogen storage reactor with longitudinal fins[J]. J Energy Storage, 2022, 51: 104426. |
| [85] | WECKERLE C, BÜRGER I, LINDER M. Novel reactor design for metal hydride cooling systems[J]. Int J Hydrogen Energy, 2017,42: 8063-8074. |
| [86] | WECKERLE C, BÜRGER I, LINDER M. Numerical optimization of a plate reactor for a metal hydride open cooling system[J]. Int J Hydrogen Energy, 2019, 44: 16862-16876. |
| [87] | WECKERLE C, NASRI M, HEGNER R, et al. A metal hydride air-conditioning system for fuel cell vehicles-performance investigations[J]. Appl Energy, 2019, 256: 113957. |
| [88] | LEWIS S D, CHIPPAR P. Numerical investigation of hydrogen absorption in a metal hydride reactor with embedded embossed plate heat exchanger[J]. Energy, 2020, 194: 116942. |
| [1] | 熊亮, 高秉阳, 刘聪, 尹东明, 张振华, 韩直亚, 丁南, 程勇, 王立民. 镁基储氢材料纳米化研究进展[J]. 应用化学, 2025, 42(3): 293-312. |
| [2] | 刘林昌, 郭亚君, 朱红林, 马静静, 李忠义, 水淼, 郑岳青. 负载型超细纳米材料催化氨硼烷水解制氢的研究进展[J]. 应用化学, 2021, 38(11): 1405-1422. |
| [3] | 李兰兰, 程方益, 陶占良, 陈军. 储氢材料第一性原理计算的研究进展[J]. 应用化学, 2010, 27(09): 998-1003. |
| [4] | 高恩庆, 周正宇. 镧镍铜钴储氢合金的制备与性质[J]. 应用化学, 1997, 0(1): 89-91. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||