应用化学 ›› 2026, Vol. 43 ›› Issue (1): 15-30.DOI: 10.19894/j.issn.1000-0518.250389

• 综合评述 • 上一篇    下一篇

固态储氢反应床的性能优化与设计研究进展

李昌伦1, 杨丽娣1, 杨哲林1, 丁南2(), 原建光2, 尹东明2, KHARYTONCHYK-Sergei3, 程勇2   

  1. 1.(能建绿色氢氨新能源(松原)有限公司,松原 131100 )
    2.中国科学院长春应用化学研究所,中国-白俄罗斯先进材料与制造“一带一路”联合实验室,长春 130022
    3.白俄罗斯国立技术大学,明斯克 220013,白俄罗斯
  • 收稿日期:2025-10-10 接受日期:2025-11-20 出版日期:2026-01-01 发布日期:2026-01-26
  • 通讯作者: 丁南
  • 基金资助:
    国家科技重大专项项目(2025ZD0617300);吉林省科技发展计划项目(20230201125GX);长春市-重大科技专项(2024GD01);中国科学院前瞻战略科技先导专项(XDA0400304)

Advances in Performance Optimization and Design of Solid-State Hydrogen Storage Reaction Beds

Chang-Lun LI1, Li-Di YANG1, Zhe-Lin YANG1, Nan DING2(), Jian-Guang YUAN2, Dong-Ming YIN2, KHARYTONCHYK-Sergei3, Yong CHENG2   

  1. 1.(Energy China Renewable Energy of Green Hydrogen and Ammonia (Songyuan) Co. ,Ltd. ,Songyuan 131100,China )
    2.China-Belarus Belt and Road Joint Laboratory for Advanced Materials and Manufacturing,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,Changchun 130022,China
    3.Belarusian National Technical University,Minsk 220013,Belarus
  • Received:2025-10-10 Accepted:2025-11-20 Published:2026-01-01 Online:2026-01-26
  • Contact: Nan DING
  • About author:dingnan@ciac.ac.cn
  • Supported by:
    the Advanced Materials-National Science and Technology Major Project(2025ZD0617300);the Scientific and Technological Developing Project of Jilin Province(20230201125GX);the Science and Technology Development Plan of Changchun(2024GD01);the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA0400304)

摘要:

目前的储氢技术主要采用高压气态储氢、低温液态储氢和固态储氢等方式。 与固态的煤或液态的石油相比,气态氢在储存与运输过程中面临诸多挑战,尤其是其体积能量密度较低,严重制约了氢气的应用。 利用金属氢化物将氢气固化为固态氢化物形式,可有效缓解氢在储运中的高效及安全性等难题。 当前,尽管固态合金储氢技术在氢气存储等领域已经获得应用,但仍存在诸多有待拓展的方向。 金属氢化物的吸放氢过程涵盖了动量、质量与热量传递等方面,是一个涉及多物理场耦合的复杂传输过程。 该技术不仅依赖于储氢材料本身具备优异性能,还很大程度上取决于反应床结构的设计。 作为储氢材料进行吸放氢的核心场所,反应床直接影响材料的实际储氢表现,因而是保障储氢材料充分发挥其性能的关键,具有不可替代的作用。 本文从传热传质机理、强化传热传质方法与结构优化等方面综述了近年来关于储氢合金反应床的研究现状,相关研究成果为储氢材料的实际应用推广提供了理论依据与技术支撑,对推动氢能产业链的可持续发展具有重要意义。

关键词: 储氢材料, 床体设计, 热传导性能, 氢分子扩散, 多尺度模拟

Abstract:

Currently, hydrogen storage technologies primarily include high-pressure gaseous hydrogen storage, cryogenic liquid hydrogen storage, and solid-state hydrogen storage. Compared to solid coal or liquid petroleum, gaseous hydrogen faces numerous challenges during storage and transportation, particularly its low volumetric energy density, which severely restricts the application of hydrogen. Utilizing metal hydrides to solidify hydrogen into a solid hydride form can effectively address issues such as efficiency and safety in hydrogen storage and transportation. Although solid-state alloy hydrogen storage technology has already been applied in fields such as hydrogen storage, there are still many areas requiring further development. The hydrogen absorption and desorption processes in metal hydrides involve momentum, mass, and heat transfer, constituting a complex multiphysics-coupled transport process. This technology relies not only on the excellent performance of the hydrogen storage materials themselves but also largely depends on the design of the reaction bed structure. As the core site where hydrogen storage materials undergo hydrogen absorption and desorption, the reaction bed directly influences the practical hydrogen storage performance of the materials, playing an irreplaceable role in ensuring the full utilization of the material properties. This article reviews recent research on hydrogen storage alloy reaction beds from the perspectives of heat and mass transfer mechanisms, methods for enhancing heat and mass transfer, and structural optimization. The related research results provide a theoretical basis and technical support for the practical application and promotion of hydrogen storage materials, contributing significantly to promoting the sustainable development of the hydrogen energy industry chain.

Key words: Hydrogen storage material, Bed design, Thermal conductivity performance, Hydrogen molecule diffusion, Multi-scale simulation

中图分类号: