应用化学 ›› 2025, Vol. 42 ›› Issue (7): 885-900.DOI: 10.19894/j.issn.1000-0518.240420
• 综合评述 • 下一篇
陈溢1, 马一格1, 郭骥3, 单新治1,2(
), 高秀敏1
收稿日期:2024-12-19
接受日期:2025-05-23
出版日期:2025-07-01
发布日期:2025-07-23
通讯作者:
单新治
基金资助:
Yi CHEN1, Yi-Ge MA1, Ji GUO3, Xin-Zhi SHAN1,2(
), Xiu-Min GAO1
Received:2024-12-19
Accepted:2025-05-23
Published:2025-07-01
Online:2025-07-23
Contact:
Xin-Zhi SHAN
About author:sxz@usst.edu.cnSupported by:摘要:
随着工业制造、医学诊断和环境监测等领域的快速发展,对有毒有害、易燃和混合气体等检测需求日益增长。 硫化氢(H2S)、二氧化氮(NO2)和甲烷(CH4)等有害气体即便在低浓度下也能对人体健康构成威胁。 因此,在环境监测和工业制造生产中,对痕量气体的检测变得至关重要。 本综述聚焦于近年来气体检测领域的最新研究进展,对比分析了传统气体检测技术和光学气体检测技术,并特别强调了光学检测技术的最新发展。 光学检测技术以其高效率、多组分检测能力及高灵敏度等优势受到更多关注。 本文详细介绍了包括可调谐二极管激光吸收光谱(TDLAS)、拉曼光谱、傅里叶变换红外光谱(FT-IR)和光声光谱(PAS)的工作原理及应用进展,并对气体检测技术的未来发展方向进行了分析和展望。
中图分类号:
陈溢, 马一格, 郭骥, 单新治, 高秀敏. 基于光学检测技术的气体分析方法及其应用研究进展[J]. 应用化学, 2025, 42(7): 885-900.
Yi CHEN, Yi-Ge MA, Ji GUO, Xin-Zhi SHAN, Xiu-Min GAO. Research Progress of Gas Analysis Methods and Applications Based on Optical Detection Technology[J]. Chinese Journal of Applied Chemistry, 2025, 42(7): 885-900.
图8 用于SPWAS性能测试的装置,安装在密封室内,用于受控CH4释放研究[23]
Fig.8 Apparatus for performance testing of the SPWAS, housed within a sealed chamber for controlled CH4 release studies[23]
图11 实验示意图: 温度调谐激光器1通过ROI中的离轴抛物面镜(OAP)。 通过高带宽光纤耦合光电二极管(FCPD)收集来自密封池处的窗口和反射镜的反射,并在DAQ系统中进行分析[26]
Fig.11 Experimental schematic: Temperature tuned Laser 1 is led through an off-axis parabolic mirror (OAP) in the ROI. Reflections from the window and mirror at the sealed cell are collected by a high bandwidth fiber coupled photodiode (FCPD) and analyzed in the DAQ-system[26]
图13 基于S-QEDS的痕量气体传感器: (a) S-QEDS传感器系统配置; (b) QEPAS传感器系统配置; (c) QEPTS传感器系统配置[33]
Fig.13 Trace gas sensor based on S-QEDS: (a) S-QEDS sensor system configuration; (b) QEPAS sensor system configuration; (c) QEPTS sensor system configuration[33]
图15 用于评估由OP-FTIR测定的N2O和CO2浓度准确性的仪器示意图[41]
Fig.15 Schematic of the instrumentation used to assess the accuracy of N2O and CO2 concentration determined by OP-FTIR[41]
图16 (A) MHCF中NH3吸附的机制示意图; (B)通过FT-IR光谱法原位检测3D打印电池内部的膜上滴加的InHCF-NP中NH3吸附的示意图[43]
Fig.16 Schematic diagrams of (A) mechanisms of NH3 adsorption in MHCFs;(B) In situ detection of NH3 adsorption in InHCF-NPs dropped onto a membrane inside a 3D-printed cell by FT-IR spectroscopy[43]
图17 (A)八面吸收池CERS原型示意图; (B)八面吸收池的工程图纸和剖视图; (C)八面吸收池实物图[60]
Fig.17 (A) Schematic of CERS prototype; (B) engineering drawing and cutaway view of the eight-sided cuvette; (C) image of the eight-sided cuvette[60]
| Detection technology | Gas detection limit | Advantages | Disadvantages | Ref. |
|---|---|---|---|---|
| Semiconductor gas sensor | C?H?: 200 ng/L C3H6O: 13 μg/L | Low cost, miniaturization | Sensitive to temperature, humidity | [ |
| Electrochemical sensors | O?: 92 mg/L C2H6O: 12.7 mg/L | Portable, fast response | Requires an oxygen-rich environment | [ |
| Gas chromatography | CH?O: 0.6 mg/L CH?CHO: 0.2 mg/L | Multi-component, high-precision | Complex, time-consuming | [ |
| TDLAS | CH4: 117 μg/L | High sensitivity | Single-component, high cost | [ |
| FT-IR | NH?: 3 μg/L | Multi-component, high resolution | Low sensitivity, complex equipment | [ |
| PAS | SO?: 2.45 μg/L C?H?: 4.28 mg/L | No background interference, ultra-high sensitivity | Noise-sensitive, complex design | [ |
| RS | H?: 69 μg/L | Multi-component, resistance to water interference | The sensitivity depends on enhancement technology, weak signal | [ |
表1 各类气体检测技术的优缺点及其对特定气体检测限
Table 1 The advantages and disadvantages of various gas detection technologies and their detection limits for specific gases
| Detection technology | Gas detection limit | Advantages | Disadvantages | Ref. |
|---|---|---|---|---|
| Semiconductor gas sensor | C?H?: 200 ng/L C3H6O: 13 μg/L | Low cost, miniaturization | Sensitive to temperature, humidity | [ |
| Electrochemical sensors | O?: 92 mg/L C2H6O: 12.7 mg/L | Portable, fast response | Requires an oxygen-rich environment | [ |
| Gas chromatography | CH?O: 0.6 mg/L CH?CHO: 0.2 mg/L | Multi-component, high-precision | Complex, time-consuming | [ |
| TDLAS | CH4: 117 μg/L | High sensitivity | Single-component, high cost | [ |
| FT-IR | NH?: 3 μg/L | Multi-component, high resolution | Low sensitivity, complex equipment | [ |
| PAS | SO?: 2.45 μg/L C?H?: 4.28 mg/L | No background interference, ultra-high sensitivity | Noise-sensitive, complex design | [ |
| RS | H?: 69 μg/L | Multi-component, resistance to water interference | The sensitivity depends on enhancement technology, weak signal | [ |
| [1] | ZHANG J, QIN Z, ZENG D, et al. Metal-oxide-semiconductor based gas sensors: screening, preparation, and integration[J]. Phys Chem Chem Phys, 2017, 19(9): 6313-6329. |
| [2] | SEKHAR P K, WIGNES F. Trace detection of research department explosive (RDX) using electrochemical gas sensor[J]. Sens Actuators B, 2016, 227: 185-190. |
| [3] | HENRIKSEN M, BJERKETVEDT D, VAAGSAETHER K, et al. Accidental hydrogen release in a gas chromatograph laboratory: a case study[J]. Int J Hydrogen Energy, 2016, 42(11): 7651-7656. |
| [4] | WANG F, CHANG J, WANG Q, et al. TDLAS gas sensing system utilizing fiber reflector based round-trip structure: double absorption path-length, residual amplitude modulation removal[J]. Sens Actuators A, 2017, 259: 152-159. |
| [5] | SHERSTOV I V, VASILIEV V A. Highly sensitive laser photo-acoustic SF6 gas analyzer with 10 decades dynamic range of concentration measurement[J]. Infrared Phys Technol, 2021, 119: 103922. |
| [6] | ABDUL G A J, HAN Y Q, BRIGNOLI O, et al. Heavy fuel oil pyrolysis and combustion: kinetics and evolved gases investigated by TGA-FTIR[J]. J Anal Appl Pyrolysis, 2017, 127: 183-195. |
| [7] | KEINER R, HERRMANN M, KUSEL K, et al. Rapid monitoring of intermediate states and mass balance of nitrogen during denitrification by means of cavity enhanced Raman multi-gas sensing[J]. Anal Chim Acta, 2015, 864: 39-47. |
| [8] | KOROTCENKOV G, CHO B K. Metal oxide composites in conductometric gas sensors: achievements and challenges[J]. Sens Actuators B, 2017, 244: 182-210. |
| [9] | 杨俊超, 潘勇, 秦墨林, 等. 金属氧化物半导体气敏传感器研究进展[J]. 化学传感器, 2022, 42(2): 10-18. |
| YANG J C, PAN Y, QIN M L, et al. Research progress of metal oxide semiconductor gas sensor[J]. Chem Sens, 2022, 42(2): 10-18. | |
| [10] | 顾子琪, 曹兆玉, 薄良波, 等. 紫外光激发金属氧化物气体传感器研究进展[J]. 微纳电子技术, 2025, 62(1): 010102. |
| GU Z Q, CAO Z Y, BO L B, et al. Research progress of UV-activated metal oxide gas sensors[J]. Micronanoelectron Technol, 2025, 62(1): 010102. | |
| [11] | SUEMATSU K, HARANO W, OYAMA T, et al. Pulse-driven semiconductor gas sensors toward ppt level toluene detection[J]. Anal Chem, 2018, 90(19): 11219-11223. |
| [12] | PARK J, TABATA H. Gas sensor array using a hybrid structure based on zeolite and oxide semiconductors for multiple bio-gas detection[J]. ACS Omega, 2021, 6(33): 21284-21293. |
| [13] | JI H Y, MI C J, YUAN Z J, et al. Multicomponent gas detection method via dynamic temperature modulation measurements based on semiconductor gas sensor[J]. IEEE Trans Ind Electron, 2023, 70(6): 6395-6404. |
| [14] | WAN H, YIN H, LIN L, et al. Miniaturized planar room temperature ionic liquid electrochemical gas sensor for rapid multiple gas pollutants monitoring[J]. Sens Actuators B, 2018, 255(Part 1): 638-646. |
| [15] | WILLIAMS D E. Electrochemical sensors for environmental gas analysis[J]. Curr Opin Electrochem, 2020, 22: 145-153. |
| [16] | JIANG G P, CUMBERLAND T, FU X G, et al. Highly stable low-cost electrochemical gas sensor with an alcohol-tolerant N,S-codoped non-precious metal catalyst air cathode[J]. ACS Sens, 2021, 6(3): 752-763. |
| [17] | LUONG J, YANG X H, HUA Y J, et al. Gas chromatography with in-situ catalytic hydrogenolysis and flame ionization detection for the direct measurement of formaldehyde and acetaldehyde in challenging matrices[J]. Anal Chem, 2018, 90(23): 13855-13859. |
| [18] | SKOG K M, XIONG F L Z, KAWASHIMA H, et al. Compact, automated, inexpensive, and field-deployable vacuum-outlet gas chromatograph for trace-concentration gas-phase organic compounds[J]. Anal Chem, 2019, 91(2): 1318-1327. |
| [19] | 田平, 王鲜然, 杨晓非. 调制电流噪声对TDLAS气体检测影响的研究[J]. 仪表技术与传感器, 2016(7): 108-111. |
| TIAN P, WANG X R, YANG X F. Study on effects of modulation current noise to TDLAS gas detection[J]. Instrum Techn Sens, 2016(7): 108-111. | |
| [20] | ZHANG T Y, KANG J W, MENG D Z, et al. Mathematical methods and algorithms for improving near-infrared tunable diode-laser absorption spectroscopy[J]. Sensors, 2018, 18(12): 4295. |
| [21] | TONG C, SIMA C, CHEN M, et al. Laser linewidth analysis and filtering/fitting algorithms for improved TDLAS-based optical gas sensor [J]. Sensors, 2023, 23(11): 5130. |
| [22] | QU Z, ZHANG S, XU Y, et al. Correction of gas concentration based on tunable diode laser absorption spectroscopy in different temperatures[J]. SPIE Proc, 2019, 11068: 405-410. |
| [23] | TOMBEZ L, ZHANG E J, ORCUTT J S, et al. Methane absorption spectroscopy on a silicon photonic chip[J]. Optica, 2017, 4(11): 1322-1325. |
| [24] | CUI R, DONG L, WU H, et al. Three-dimensional printed miniature fiber-coupled multipass cells with dense spot patterns for ppb-level methane detection using a near-IR diode laser[J]. Anal Chem, 2020, 92(19): 13034-13041. |
| [25] | WU Q, YANG Y, SHI Y, et al. Highly responsive, miniaturized methane telemetry sensor based on open-path TDLAS[J]. Photonics, 2023, 10(11): 1281. |
| [26] | HANSEMANN C, BONARENS M, EMMERT J, et al. Towards a spatially resolved, single-ended TDLAS system for characterizing the distribution of gaseous species[J]. Sci Rep, 2024, 14(1): 11708. |
| [27] | PALZER S. Photoacoustic-based gas sensing: a review[J]. Sensors, 2020, 20(9): 2745. |
| [28] | 马欲飞. 基于石英增强光声光谱的气体传感技术研究进展[J]. 物理学报, 2021, 70(16): 29-40. |
| MA Y F. Research progress of quartz-enhanced photoacoustic spectroscopy based gas sensing[J]. Acta Phys Sin, 2021, 70(16): 29-40. | |
| [29] | 马凤翔, 田宇, 陈珂, 等. 基于光纤放大增强型光声光谱的H2S与CO2检测技术[J]. 光学学报, 2021, 41(7): 198-206. |
| MA F X, TIAN Y, CHEN K, et al. Detection technology of H2S and CO2 based on fiber amplifier enhanced photoacoustic spectroscopy[J]. Acta Opt Sin, 2021, 41(7): 198-206. | |
| [30] | 李振钢, 刘家祥, 司赶上, 等. H型差分光声池的优化设计及NO2气体检测研究[J]. 光学学报, 2022, 42(18): 234-243. |
| LI Z G, LIU J X, SI G S, et al. Optimization design of H-type differential photoacoustic cell and NO2 detection[J]. Acta Opt Sin, 2022, 42(18): 234-243. | |
| [31] | CHEN K, GONG Z F, YU Q X. Fiber-amplifier-enhanced resonant photoacoustic sensor for sub-ppb level acetylene detection[J]. Sens Actuators A, 2018, 274: 184-188. |
| [32] | YU Y, TIAN C, WANG Z, et al. Multicomponent gas detection technology of FDM and TDM based on photoacoustic spectroscopy[J]. Appl Opt, 2021, 60(4): 838-843. |
| [33] | QIAO S D, HE Y, MA Y F. Trace gas sensing based on single-quartz-enhanced photoacoustic-photothermal dual spectroscopy[J]. Opt Lett, 2021, 46(10): 2449-2452. |
| [34] | ZHANG L, LIU L X, LIU Y Y, et al. Advances in differential photoacoustic spectroscopy for trace gas detection[J]. Microw Opt Technol Lett, 2022, 65(5): 1506-1515. |
| [35] | YE W L, HE L F, XIA Z K, et al. Miniaturized methane detection system based on photoacoustic spectroscopy[J]. Microw Opt Technol Lett, 2023, 65(5): 1421-1426. |
| [36] | CARTER B M, DOBYNS B M, BECKINGHAM B S, et al. Multicomponent transport of alcohols in an anion exchange membrane measured by in-situ ATR FTIR spectroscopy [J]. Polymer, 2017, 123: 144-152. |
| [37] | LOIANNO V, BYE K P, GALIZIA M, at al. Plasticization mechanism in polybenzimidazole membranes for organic solvent nanofiltration: molecular insights from in situ FTIR spectroscopy[J]. J Polym Sci, 2020, 58(18): 2547-2560. |
| [38] | LI X, WANG Y, SHI G, et al. Evaluation of natural ageing responses on Burmese amber durability by FTIR spectroscopy with PLSR and ANN models[J]. Spectrochim Acta Part A, 2023, 285: 121936. |
| [39] | MONTORO O R, TORTAJADA J, LOBATO A, et al. Theoretical (DFT) and experimental (Raman and FTIR) spectroscopic study on communic acids, main components of fossil resins[J]. Spectrochim Acta Part A, 2020, 224: 117405. |
| [40] | TAKAMURA A, HALAMKOVA L, OZAWA T, et al. Phenotype profiling for forensic purposes: determining donor sex based on Fourier transform infrared spectroscopy of urine traces[J]. Anal Chem, 2019, 91(9): 6288-6295. |
| [41] | LIN C H, GRANT R H, HEBER A J, et al. Application of open-path Fourier transform infrared spectroscopy (OP-FTIR) to measure greenhouse gas concentrations from agricultural fields[J]. Atmos Meas Technol, 2019, 12(6): 3403-3415. |
| [42] | D'ARCO A, MANCINI T, PAOLOZZI M C, et al. High sensitivity monitoring of VOCs in air through FTIR spectroscopy using a multipass gas cell setup[J]. Sensors, 2022, 22(15): 5624. |
| [43] | MANAKASETTHARN S, TAKAHASHI A, KAWAMOTO T, et al. Highly sensitive and exceptionally wide dynamic range detection of ammonia gas by indium hexacyanoferrate nanoparticles using FTIR spectroscopy[J]. Anal Chem, 2018, 90(7): 4856-4862. |
| [44] | PAN Y, SPIJKER C, RAUPENSTRAUCH H. TGA-FTIR for kinetic and evolved gas analysis of the coal particles in dust deflagration[J]. Appl Therm Eng, 2023, 231: 120881. |
| [45] | 李占龙, 周密, 左剑, 等. 红外光谱和拉曼光谱法分析玉米种子的成分[J]. 分析化学, 2007, 35(11): 1636-1638. |
| LI Z L, ZHOU M, ZUO J, et al. Infrared and Raman spectral analysis for the corn seed[J]. Chin J Anal Chem, 2007, 35(11): 1636-1638. | |
| [46] | 熊艳梅, 唐果, 段佳, 等. 近红外、中红外和拉曼光谱法测定商品农药制剂中溴氰菊酯的含量[J]. 光谱学与光谱分析, 2010, 30(11): 2936-2940. |
| XIONG Y M, TANG G, DUAN J, et al. Quantitative analysis of the content of deltamethrin in agrochemicals by near-infrared, attenuated total reflectance infrared and Raman spectroscopy[J]. Spectrosc Spectral Anal, 2010, 30(11): 2936-2940. | |
| [47] | 高月滢,万玉琪,刘琳,等. 表面增强拉曼光谱法灵敏检测亚硫酸根离子[J]. 食品科学, 2022, 43(20): 328-335. |
| GAO Y Y, WAN Y Q, LIU L, et al. Sensitive detection of sulfite ions by surface-enhanced Raman spectroscopy[J]. Food Sci, 2022, 43(20): 328-335. | |
| [48] | 罗丹, 周光明, 陈蓉, 等. 表面增强拉曼光谱法分析软饮料中的阿斯巴甜[J]. 分析测试学报, 2019, 38(3): 328-333. |
| LUO D, ZHOU G M, CHEN R, et al. Nondestructive analysis of aspartame in soft drinks by surface enhanced Raman spectroscopy[J]. Instrum Anal, 2019, 38(3): 328-333. | |
| [49] | 王乐, 张爱霞, 陈晞, 等. 表面增强拉曼光谱法快速检测饮料中玫瑰红B[J]. 食品研究与开发, 2018, 39(7): 126-130. |
| WANG L, ZHANG A X, CHEN X, et al. Rapidly screening Rhodamine B in drinks by surface enhanced Raman spectroscopy[J]. Food Res Dev, 2018, 39(7): 126-130. | |
| [50] | 申炳俊, 金丽虹, 刘昱鑫, 等. 荧光光谱结合表面增强拉曼光谱法研究紫檀芪与人血清白蛋白相互作用[J]. 分析化学, 2017, 45(11): 1613-1620. |
| SHEN B J, JIN L H, LIU Y X, et al. Study of intermolecular interactions between pterostilbene and human serum albumin by fluorescence spectrometry-surface enhanced Raman spectroscopy[J]. Chin J Anal Chem, 2017, 45(11): 1613-1620. | |
| [51] | 崔子孺, 周思宇, 肖暘, 等. 基于拉曼光谱法的电偏置悬空石墨烯器件热导率研究[J]. 中国激光, 2023, 50(1): 218-225. |
| CUI Z R, ZHOU S Y, XIAO Y, et al. Thermal conductivity of electrically biased few-layer suspended graphene devices measured by Raman spectroscopy[J]. Chin J Lasers, 2023, 50(1): 218-225. | |
| [52] | 董晶晶, 郝翔. 激光拉曼光谱法测定中药三七花中非法添加的化学降压药[J]. 中国药师, 2017, 20(2): 391-393. |
| DONG J J, HAO X. Identification of hypotensive drugs illegally added to flower buds of panax notoginseng by laser Raman spectroscopy[J]. Chin Pharm, 2017, 20(2): 391-393. | |
| [53] | WEBER A, PORTO S P S, CHEESMAN L E, et al. High-resolution Raman spectroscopy of gases with cw-laser excitation[J]. J Opt Soc Am, 1967, 57(1): 19-27. |
| [54] | SYMES R, SAYER R M, REID J P. Cavity enhanced droplet spectroscopy: principles, perspectives and prospects[J]. Phys Chem Chem Phys, 2004, 6(3): 474-487. |
| [55] | GHENUCHE P, RAMMLER S, JOLY N Y, et al. Kagome hollow-core photonic crystal fiber probe for Raman spectroscopy[J]. Opt Lett, 2012, 37(21): 4371-4373. |
| [56] | NIKLAS C, WACKERBARTH H, CTISTIS G. A short review of cavity-enhanced Raman spectroscopy for gas analysis[J]. Sensors, 2021, 21(5): 1698. |
| [57] | WONG C L, DINISH U S, SCHMIDT M S K, et al. Non-labeling multiplex surface enhanced Raman scattering (SERS) detection of volatile organic compounds (VOCs)[J]. Anal Chim Acta, 2014, 844: 54-60. |
| [58] | ZENG Z, LIU Y, WEI J. Recent advances in surface-enhanced Raman spectroscopy (SERS): finite-difference time-domain (FDTD) method for SERS and sensing applications[J]. Trends Anal Chem, 2016, 75: 162-173. |
| [59] | HOPPMANN E P, YU W W, WHITE I M. Highly sensitive and flexible inkjet printed SERS sensors on paper [J]. Methods, 2013, 63(3): 219-224. |
| [60] | YANG D, LIU Q, GUO J, et al. Cavity enhanced multi-channels gases Raman spectrometer[J]. Sensors, 2021, 21(11): 3803. |
| [61] | WANG P, CHEN W, WANG J, et al. Cavity-enhanced Raman spectroscopy for detection of trace gaseous impurities in hydrogen for fuel cells[J]. Anal Chem, 2023, 95(17): 6894-6904. |
| [62] | YANG Q Y, TAN Y, QU Z H, et al. Multiple gas detection by cavity-enhanced Raman spectroscopy with sub-ppm sensitivity[J]. Anal Chem, 2023, 95(13): 5652-5660. |
| [63] | PARK J, THOMASSON J A, GALE C C, et al. Adsorbent-SERS technique for determination of plant VOCs from live cotton plants and dried teas[J]. ACS Omega, 2020, 5(6): 2779-2790. |
| [64] | LEONG S X, LEONG Y X, TAN E X, et al. Noninvasive and point-of-care surface-enhanced Raman scattering (SERS)-based breathalyzer for mass screening of coronavirus disease 2019 (COVID-19) under 5 min[J]. ACS Nano, 2022, 16(2): 2629-2639. |
| [65] | CAI Y, XU G, YANG D, et al. On-line multi-gas component measurement in the mud logging process based on Raman spectroscopy combined with a CNN-LSTM-AM hybrid model[J]. Anal Chim Acta, 2023, 1259: 341200. |
| [1] | 程久庚, 苏朝晖. 原子力-红外光谱定量分析聚1-丁烯/聚丙烯共混物的相区组成[J]. 应用化学, 2022, 39(02): 266-271. |
| [2] | 张春晖, 刘西京, 章蓉, 图雅. 蒙药荜茇不同提取物的红外光谱[J]. 应用化学, 2021, 38(3): 271-275. |
| [3] | 李小丽, 刘宝峰, 谢文兵, 邓建成, 徐经伟. 内蒙和吉林马勃的产地对比分析[J]. 应用化学, 2012, 29(04): 477-482. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||