| [1] |
MIYAZAKI T, UCHIDA S, NAGATOISHI S, et al. Polymeric nanocarriers with controlled chain flexibility boost mRNA delivery in vivo through enhanced structural fastening[J]. Adv Healthc Mater, 2020, 9(16): e2000538.
|
| [2] |
SHI J Q, YIN H Y, SUN Q M, et al. Rational design of polymeric mRNA delivery vectors to achieve excellent room-temperature storage stability and delivery efficiency[J]. Chem Mater, 2024, 36(11): 5422-5435.
|
| [3] |
ZHANG H P, MENG C Y, YI X W, et al. Fluorinated lipid nanoparticles for enhancing mRNA delivery efficiency[J]. ACS Nano, 2024, 18(11): 7825-7836.
|
| [4] |
樊渝川, 殷涵, 李钰, 等. mRNA疫苗与脂质纳米颗粒递送载体的研究进展[J]. 科学通报, 2024, 69(33): 4813-4823.
|
|
FAN Y C, YIN H, LI Y, et al. Progress on mRNA vaccines and lipid nanoparticles[J]. Chin Sci Bull, 2024, 69(33): 4813-4823.
|
| [5] |
张苗苗, 李港, 侯泰霖, 等. 基于纳米技术的mRNA递送系统的研究进展[J]. 科学通报, 2024, 69(33): 4858-4873.
|
|
ZHANG M M, LI G, HOU T L, et al. Advancements in nanotechnology-enabled mRNA delivery systems[J]. Chin Sci Bull, 2024, 69(33): 4858-4873.
|
| [6] |
LIU X, YANG Y L, HAN M M, et al. Guanylated hyperbranched polylysines with high in vitro and in vivo antifungal activity[J]. Adv Healthc Mater, 2022, 11(18): e2201091.
|
| [7] |
SCHOLL M, NGUYEN T Q, BRUCHMANN B, et al. The thermal polymerization of amino acids revisited; synthesis and structural characterization of hyperbranched polymers from L-lysine[J]. J Polym Sci Pol Chem, 2007, 45(23): 5494-5508.
|
| [8] |
HAJJ K A, MELAMED J R, CHAUDHARY N, et al. A potent branched-tail lipid nanoparticle enables multiplexed mRNA delivery and gene editing in vivo[J]. Nano Lett, 2020, 20(7): 5167-5175.
|
| [9] |
FAN C Y, WANG S W, CHUNG C, et al. Synthesis of a dendritic cell-targeted self-assembled polymeric nanoparticle for selective delivery of mRNA vaccines to elicit enhanced immune responses[J]. Chem Sci, 2024, 15(29): 11626-11632.
|
| [10] |
LAI Q Y, LI W L, HU D D, et al. Hepatic stellate cell-targeted chemo-gene therapy for liver fibrosis using fluorinated peptide-lipid hybrid nanoparticles[J]. J Control Release, 2024, 376: 601-617.
|
| [11] |
LIU S, WANG X, YU X L, et al. Zwitterionic phospholipidation of cationic polymers facilitates systemic mRNA delivery to spleen and lymph nodes[J]. J Am Chem Soc, 2021, 143(50): 21321-21330.
|
| [12] |
JARZEBINSKA A, PASEWALD T, LAMBRECHT J, et al. A single methylene group in oligoalkylamine-based cationic polymers and lipids promotes enhanced mRNA delivery[J]. Angew Chem Int Ed, 2016, 55(33): 9591-9595.
|
| [13] |
WANG L Y, LI Y C, JIANG P G, et al. Enhanced mRNA delivery via incorporating hydrophobic amines into lipid nanoparticles[J]. Colloids Surf B Biointerfaces, 2025, 249: 114528.
|
| [14] |
YONG H Y, LIN L X, LI Z L, et al. Tailoring highly branched poly(beta-amino ester)s for efficient and organ-selective mRNA delivery[J]. Nano Lett, 2024, 24(30): 9368-9376.
|
| [15] |
ZHAO H Q, MA S, QI Y B, et al. A polyamino acid-based phosphatidyl polymer library for in vivo mRNA delivery with spleen targeting ability[J]. Mater Horiz, 2024, 11(11): 2739-2748.
|
| [16] |
LONG J R, YU C X, ZHANG H L, et al. Novel ionizable lipid nanoparticles for SARS-CoV-2 Omicron mRNA delivery[J]. Adv Healthc Mater, 2023, 12(13): e2202590.
|
| [17] |
GUO X Y, YANG Z Y, FANG H P, et al. Modulating the oxidation degree of linear polyethyleneimine for preparation of highly efficient and low-cytotoxicity degradable gene delivery carriers[J]. Chin J Polym Sci, 2024, 42(11): 1699-1709.
|
| [18] |
KOWALSKI P S, PALMIERO C U, HUANG Y X, et al. Ionizable amino-polyesters synthesized via ring opening polymerization of tertiary amino-alcohols for tissue selective mRNA delivery[J]. Adv Mater, 2018: e1801151.
|
| [19] |
KACZMAREK J C, PATEL A K, KAUFFMAN K J, et al. Polymer-lipid nanoparticles for systemic delivery of mRNA to the lungs[J]. Angew Chem Int Ed, 2016, 55(44): 13808-13812.
|
| [20] |
KIM H L, SARAVANAKUMAR G, LEE S, et al. Poly(beta-amino ester) polymer library with monomer variation for mRNA delivery[J]. Biomaterials, 2025, 314: 122896.
|
| [21] |
XUE L L, ZHAO G, GONG N Q, et al. Combinatorial design of siloxane-incorporated lipid nanoparticles augments intracellular processing for tissue-specific mRNA therapeutic delivery[J]. Nat Nanotechnol, 2025, 20(1): 132-143.
|
| [22] |
唐国鸿, 赵振, 仲家慧, 等. 氨基酸及其衍生物的生物基聚氨酯的制备和性能的研究进展[J]. 应用化学, 2025, 42(1): 42-57.
|
|
TANG G H, ZHAO Z, ZHONG J H, et al. Research progress on preparation and properties of bio-based polyurethanes from amino acid and its derivatives [J]. Chin J Appl Chem, 2025, 42(1): 42-57.
|
| [23] |
ZHANG X Y, SU K X, WU S Q, et al. One-component cationic lipids for systemic mRNA delivery to splenic T cells[J]. Angew Chem Int Ed, 2024, 63(26): e202405444.
|
| [24] |
李港, 侯泰霖, 蒋为, 等. 聚合物载体在mRNA递送领域的研究进展[J]. 药学进展, 2024, 48(6): 437-449.
|
|
LI G, HOU T L, JIANG W, et al. Research progress of polymer carriers in the field of mRNA delivery[J]. Prog Pharm Sci, 2024, 48(6): 437-449.
|
| [25] |
CHEN G H, LIU X, LIU H, et al. Quaternary ammonium salt derivatives of hyperbranched polylysine with enhanced antibacterial activity against multidrug-resistant Gram-negative bacteria[J]. ACS Appl Bio Mater, 2024, 7(11): 7444-7452.
|
| [26] |
DONG W, LI Z B, HOU T L, et al. Multicomponent synthesis of imidazole-based ionizable lipids for highly efficient and spleen-selective messenger RNA delivery[J]. J Am Chem Soc, 2024, 146(22): 15085-15095.
|
| [27] |
KADLECOVA Z, BALDI L, HACKER D, et al. Comparative study on the in vitro cytotoxicity of linear, dendritic, and hyperbranched polylysine analogues[J]. Biomacromolecules, 2012, 13(10): 3127-3137.
|
| [28] |
KADLECOVA Z, RAJENDRA Y, MATASCI M, et al. DNA delivery with hyperbranched polylysine: a comparative study with linear and dendritic polylysine[J]. J Control Release, 2013, 169(3): 276-288.
|
| [29] |
NAIDU G S, YONG S B, RAMISHETTI S, et al. A combinatorial library of lipid nanoparticles for cell type-specific mRNA delivery[J]. Adv Sci, 2023, 10(19): e2301929.
|
| [30] |
LV K, YU Z L, WANG J, et al. Discovery of ketal-ester ionizable lipid nanoparticle with reduced hepatotoxicity, enhanced spleen tropism for mRNA vaccine delivery[J]. Adv Sci, 2024, 11(45): e2404684.
|
| [31] |
焦元昊, 崔洪燕, 张留伟, 等. 基于原位聚合技术构建细胞内微环境响应型DNA递送系统[J]. 应用化学, 2022, 39(10): 1510-1522.
|
|
JIAO Y H, CUI H Y, ZHANG L W,et al. Fabrication of multifunctional gene delivery systems responsible to intracellular microenvironments through in situ polymerization[J]. Chin J Appl Chem, 2022, 39(10): 1510-1522.
|
| [32] |
GAO Y X, ZHAO H Q, ZHAO J Y, et al. Polymer-based synthetic oncolytic virus-like nanoparticles for cancer immunotherapy[J]. Sci China Chem, 2023, 66(12): 3576-3586.
|
| [33] |
DENG Y H, ZHANG J, SUN X M, et al. Potent gene delivery from fluorinated poly(beta-amino ester) in adhesive and suspension difficult-to-transfect cells for apoptosis and ferroptosis[J]. J Control Release, 2023, 363: 597-605.
|
| [34] |
DONG L Y, DENG X Q, LI Y, et al. Stimuli-responsive mRNA vaccines to induce robust CD8+ T Cell response via ROS-mediated innate immunity boosting[J]. J Am Chem Soc, 2024, 146(28): 19218-19228.
|
| [35] |
ZHANG Y Y, HU Y Y, TIAN H Y, et al. Opportunities and challenges for mRNA delivery nanoplatforms[J]. J Phys Chem Lett, 2022, 13(5): 1314-1322.
|
| [36] |
HAN X X, ALAMEH M G, XU Y, et al. Optimization of the activity and biodegradability of ionizable lipids for mRNA delivery via directed chemical evolution[J]. Nat Biomed Eng, 2024, 8(11): 1412-1424.
|
| [37] |
LIU H, LIU X, CAO Y Q, et al. Engineering antibacterial activities and biocompatibility of hyperbranched lysine-based random copolymers[J]. Chin J Polym Sci, 2023, 41(3): 345-355.
|
| [38] |
ZENG G G, HE Z P, YANG H H, et al. Cationic lipid pairs enhance liver-to-lung tropism of lipid nanoparticles for in vivo mRNA delivery[J]. ACS Appl Mater Interfaces, 2024, 16(20): 25698-25709.
|
| [39] |
LI S R, LV M Y, MEI W K, et al. Fluorinated polyethylenimine and fluorinated choline phosphate lipids complex system for efficient mRNA delivery to deep-seated tumor tissues[J]. Biomacromolecules, 2024, 25(8): 5251-5259.
|
| [40] |
KRANZ L M, DIKEN M, HAAS H, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy[J]. Nature, 2016, 534(7607): 396-401.
|
| [41] |
KADLECOVA Z, RAJENDRA Y, MATASCI M, et al. Hyperbranched polylysine: a versatile, biodegradable transfection agent for the production of recombinant proteins by transient gene expression and the transfection of primary cells[J]. Macromol Biosci, 2012, 12(6): 794-804.
|